
KRR Lectures — Contents
1. Introduction to the KRR MSc Course⇒
2. Introduction to KRR⇒
3. Fundamentals of Classical Logic I⇒
4. Propositional Resolution⇒
5. Fundamentals of Classical Logic II⇒
6. Fundamentals of Classical Logic III⇒
7. Fundamentals of Classical Logic IV⇒
8. The Winograd Schema Challenge⇒
9. Representing Time and Change⇒

10. Prolog⇒
11. Spatial Reasoning⇒
12. Modes of Inference⇒
13. Multi-Valued and Fuzzy Logics⇒
14. Non-Monotonic Reasoning⇒

15. Description Logic⇒
16. First-Order Resolution⇒
17. Compositional Reasoning⇒

Knowledge Representation

Lecture KRR-1

Introduction to the
Knowledge Represenation and

Reasoning Masters Course
KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-1

Course Elements

• The course will cover the field of knowledge representation by
giving a high-level overview of key aims and issues.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-2

Course Elements

• The course will cover the field of knowledge representation by
giving a high-level overview of key aims and issues.

• Motivation and philosophical issues will be considered.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-2

Course Elements

• The course will cover the field of knowledge representation by
giving a high-level overview of key aims and issues.

• Motivation and philosophical issues will be considered.

• Fundamental principles of logical analysis will be presented
(concisely).

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-2

Course Elements

• The course will cover the field of knowledge representation by
giving a high-level overview of key aims and issues.

• Motivation and philosophical issues will be considered.

• Fundamental principles of logical analysis will be presented
(concisely).

• Several important representational formalisms will be examined.
Their motivation and capabilities will be explored.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-2

Course Elements

• The course will cover the field of knowledge representation by
giving a high-level overview of key aims and issues.

• Motivation and philosophical issues will be considered.

• Fundamental principles of logical analysis will be presented
(concisely).

• Several important representational formalisms will be examined.
Their motivation and capabilities will be explored.

• The potential practicality of KR methods will be illustrated by
examining some examples of implemented systems.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-2

Information and Learning

Course materials will be available from the module pages on
Minerva and also at https://teaching.bb-ai.net/KRR/KRR.

html.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-3

https://teaching.bb-ai.net/KRR/KRR.html
https://teaching.bb-ai.net/KRR/KRR.html

Information and Learning

Course materials will be available from the module pages on
Minerva and also at https://teaching.bb-ai.net/KRR/KRR.

html.

There is no set text book for this course, but certain parts of the
following provide very useful supporting material:

Russell S. and Norvig P. Artificial Intelligence, A Modern
Approach, 3rd Edition (especially chapters 7–12).

Brachman RJ and Levesque HJ, Knowledge Representation and
Reasoning, Morgan Kaufmann 2004

Poole D and Mackworth A, Artificial intelligence: foundations of
computational agents,

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-3

https://teaching.bb-ai.net/KRR/KRR.html
https://teaching.bb-ai.net/KRR/KRR.html

There is an html version of this last title at
http://artint.info/html/ArtInt.html

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-4

http://artint.info/html/ArtInt.html

Major Course Topics

• Classical Logic and Proof Systems.

• Automated Reasoning.

• Programming in Prolog.

• Representing and reasoning about time and change.

• Space and physical objects.

• Specialised AI representations: situation calculus, non-
monotonic logic, description logic, fuzzy logic.

• Ontology and AI Knowledge Bases.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-5

Assessment
The module will have the following assessments:

1. Assignment 1 (20%): Solution of problems by representing
in logic and using an automated theorem prover (Prover9).
Individual Work.

2. Assignment 2 (done in pairs):

(A) (10%) Implementation of knowledge-based inference capabilities
(using Prolog)

(B) (10%) Short essay (2-3 pages) about an specific case of the
Winograd Schema Challenge problem.

3. Final examination (60%) consisting of short problems based on
all the different representation and reasoning systems covered
in the module.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-6

Relation to
Basic Logical Background

A large amount of material is available in the form of slides and
exercises.

We shall recap this but not revisit every detail.

We shall look at the application of KRR techniques in more
general problem settings; and will often see that several represen-
tational formalisms and reasoning mechanisms need to be
combined.

KR∧R — Introduction to the Knowledge Represenation and Reasoning Masters Course 〈 Contents 〉 KRR-1-7

Knowledge Representation

Lecture KRR-2

Introduction to Knowledge
Represenation and Reasoning

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-1

AI and the KR Paradigm

The methodology of Knowledge Representation and Automated
Reasoning is one of the major strands of AI research.
It employs symbolic representation of information together with
logical inference procedures as a means for solving problems.

Although implementation and deployment of KRR techniques is
very challenging, it has given rise to ideas and techniques that
are used in a wide range of applications.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-2

AI and the KR Paradigm

The methodology of Knowledge Representation and Automated
Reasoning is one of the major strands of AI research.
It employs symbolic representation of information together with
logical inference procedures as a means for solving problems.

Although implementation and deployment of KRR techniques is
very challenging, it has given rise to ideas and techniques that
are used in a wide range of applications.

Most of the earliest investigations into AI adopted this approach
and it is still going strong.
(It is sometimes called GOFAI — good old-fashioned AI.)

However, it is not the only (and perhaps not the most fashionable)
approach to AI.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-2

Neural Nets

One methodology for research in AI is to study the structure and
function of the brain and try to recreate or simulate it.

How is intelligence dependent on its physical incarnation?

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-3

Situated and Reactive AI
Another approach is to tackle AI problems by observing and
seeking to simulate intelligent behaviour by modelling the way in
which an intelligent agent reacts to its environment.

A popular methodology is to look first at simple organisms, such
as insects, as a first step towards understanding more high-level
intelligence.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-4

KRR vs ML

The view of AI taken in KRR is often considered to be opposed to
that of Machine Learning.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-5

KRR vs ML

The view of AI taken in KRR is often considered to be opposed to
that of Machine Learning.

This is partly true.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-5

KRR vs ML

The view of AI taken in KRR is often considered to be opposed to
that of Machine Learning.

This is partly true.

ML automatically creates models from data, that contain
knowledge in an implicit form.
KRR typically uses hand-crafted models that store knowledge in
an explicit way.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-5

KRR vs ML

The view of AI taken in KRR is often considered to be opposed to
that of Machine Learning.

This is partly true.

ML automatically creates models from data, that contain
knowledge in an implicit form.
KRR typically uses hand-crafted models that store knowledge in
an explicit way.

ML is primarily concerned with classification.
KRR is primarily concerned with inference.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-5

KRR vs ML
The view of AI taken in KRR is often considered to be opposed to
that of Machine Learning.

This is partly true.

ML automatically creates models from data, that contain
knowledge in an implicit form.
KRR typically uses hand-crafted models that store knowledge in
an explicit way.

ML is primarily concerned with classification.
KRR is primarily concerned with inference.

Capabilities of ML systems are limited by the data upon which
they are trained.
KRR can work in completely novel situations.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-5

Intelligence via Language

The KR paradigm takes language as an essential vehicle for
intelligence.

Animals can be seen as semi-intelligent because they only posses
a rudimentary form of language.

The principle role of language is to represent information.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-6

Language and Representation

Written language seems to have its
origins in pictorial representations.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-7

Language and Representation

Written language seems to have its
origins in pictorial representations.

However, it evolved into a much more
abstract representation.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-7

Language and Logic

• Patters of natural language inference are used as a guide to the
form of valid principles of logical deduction.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-8

Language and Logic

• Patters of natural language inference are used as a guide to the
form of valid principles of logical deduction.

• Logical representations clean up natural language and aim to
make it more definite.

For example:

If it is raining, I shall stay in.
It is raining.

Therefore, I shall stay in.

R→ S

R

∴ S

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-8

Formalisation and Abstraction

In employing a formal logical representation we aim to abstract
from irrelevant details of natural descriptions to arrive at the
essential structure of reasoning.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-9

Formalisation and Abstraction

In employing a formal logical representation we aim to abstract
from irrelevant details of natural descriptions to arrive at the
essential structure of reasoning.

Typically we even ignore much of the logical structure present in
natural language because we are only interested in (or only know
how to handle) certain modes of reasoning.

For example, for many purposes we can ignore the tense structure
of natural language.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-9

Formal and Informal Reasoning

The relationship between formal and informal modes of reasoning
might be pictured as follows:

Reasoning in natural language can be regarded as semi-formal.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-10

What do we represent?

• Our problem.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-11

What do we represent?

• Our problem.

• What would count as a solution.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-11

What do we represent?

• Our problem.

• What would count as a solution.

• Facts about the world.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-11

What do we represent?

• Our problem.

• What would count as a solution.

• Facts about the world.

• Logical properties of abstract concepts
(i.e. how they can take part in inferences).

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-11

What do we represent?

• Our problem.

• What would count as a solution.

• Facts about the world.

• Logical properties of abstract concepts
(i.e. how they can take part in inferences).

• Rules of inference.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-11

Finding a “Good” Representation

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-12

Finding a “Good” Representation

• We must determine what knowledge is relevant to the problem.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-12

Finding a “Good” Representation

• We must determine what knowledge is relevant to the problem.

• We need to find a suitable level of abstraction.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-12

Finding a “Good” Representation

• We must determine what knowledge is relevant to the problem.

• We need to find a suitable level of abstraction.

• Need a representation language in which problem and solution
can be adequately expressed.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-12

Finding a “Good” Representation

• We must determine what knowledge is relevant to the problem.

• We need to find a suitable level of abstraction.

• Need a representation language in which problem and solution
can be adequately expressed.

• Need a correct formalisation of problem and solution in that
language.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-12

Finding a “Good” Representation

• We must determine what knowledge is relevant to the problem.

• We need to find a suitable level of abstraction.

• Need a representation language in which problem and solution
can be adequately expressed.

• Need a correct formalisation of problem and solution in that
language.

• We need a logical theory of the modes of reasoning required to
solve the problem.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-12

Inference and Computation

A tough issue that any AI reasoning system must confront is that
of Tractability.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-13

Inference and Computation

A tough issue that any AI reasoning system must confront is that
of Tractability.

A problem domain is intractable if it is not possible for a
(conventional) computer program to solve it in ‘reasonable’ time
(and with ‘reasonable’ use of other resources such as memory).

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-13

Inference and Computation

A tough issue that any AI reasoning system must confront is that
of Tractability.

A problem domain is intractable if it is not possible for a
(conventional) computer program to solve it in ‘reasonable’ time
(and with ‘reasonable’ use of other resources such as memory).

Certain classes of logical problem are not only intractable but also
undecidable.
This means that there is no program that, given any instance
of the problem, will in finite time either: a) find a solution; or b)
terminate having determined that no solution exists.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-13

Inference and Computation

A tough issue that any AI reasoning system must confront is that
of Tractability.

A problem domain is intractable if it is not possible for a
(conventional) computer program to solve it in ‘reasonable’ time
(and with ‘reasonable’ use of other resources such as memory).

Certain classes of logical problem are not only intractable but also
undecidable.
This means that there is no program that, given any instance
of the problem, will in finite time either: a) find a solution; or b)
terminate having determined that no solution exists.

Later in the course we shall make these concepts more precise.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-13

Time and Change

1+1=2
Standard, classical logic was developed
primarily for applications to mathematics.

1+1=2

Since mathematical truths are eternal, it is not geared towards
representing temporal information.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-14

Time and Change

1+1=2
Standard, classical logic was developed
primarily for applications to mathematics.

1+1=2

Since mathematical truths are eternal, it is not geared towards
representing temporal information.

However, time and change play an
essential role in many AI problem domains.
Hence, formalisms for temporal reasoning
abound in the AI literature.

We shall study several of these and the difficulties that obstruct
any simple approach (in particular the famous Frame Problem).

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-14

Spatial Information

Knowledge of spatial properties and relationships is required for
many commonsense reasoning problems.

While mathematical models exist they are not always well-suited
for AI problem domains.

We shall look at some ways of representing qualitative spatial
information.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-15

Describing and Classifying Objects

To solve simple commonsense problems we often need detailed
knowledge about everyday objects.

Can we precisely specify the properties of type of object such as
a cup?

Which properties are essential?

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-16

Combining Space and Time

For many purposes we would like to be able to reason with
knowledge involving both spatial and temporal information.

For example we may want to reason about the working of some
physical mechanism:

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-17

Robotic Control
An important application for spatio-temporal reasoning is robot
control.

Many AI techniques (as well as a great deal of engineering
technology) have been applied to this domain.

While success has been achieved for some constrained
envioronments, flexible solutions are elusive.

Versatile high-level control of autonomous agents is a major goal
of KR.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-18

Uncertainty

Much of the information available to an intelligent (human or
computer) is affected by some degree of uncertainty.

This can arise from: unreliable information sources, inaccurate
measurements, out of date information, unsound (but perhaps
potentially useful) deductions.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-19

Uncertainty

Much of the information available to an intelligent (human or
computer) is affected by some degree of uncertainty.

This can arise from: unreliable information sources, inaccurate
measurements, out of date information, unsound (but perhaps
potentially useful) deductions.

This is a big problem for AI and has attracted much attention.
Popular approaches include probabalistic and fuzzy logics.

But ordinary classical logics can mitigate the problem by use of
generality. E.g. instead of prob(φ) = 0.7, we might assert a more
general claim φ ∨ ψ.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-19

Ontology

Literally Ontology means the study of what exists.
It is studied in philosophy as a branch of Metaphysics.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-20

Ontology

Literally Ontology means the study of what exists.
It is studied in philosophy as a branch of Metaphysics.

In KR the term Ontology is used to refer to a rigorous logical
specification of a domain of objects and the concepts and
relationships that apply to that domain.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-20

Ontology

Literally Ontology means the study of what exists.
It is studied in philosophy as a branch of Metaphysics.

In KR the term Ontology is used to refer to a rigorous logical
specification of a domain of objects and the concepts and
relationships that apply to that domain.

Ontologies are intended to guarantee the coherence of
information and to allow relyable exchange of information between
computer systems.

Use of ontologies is one of the main ways in which KRR
techniques are exploited in modern software applications.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-20

Issues of Ambiguity and Vagueness

A huge problem that obstructs the construction of rigorous
ontologies is the widespread presence of ambiguity and
vagueness in natural concepts.

For example: tall, good, red, cup, mountain.

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-21

Issues of Ambiguity and Vagueness

A huge problem that obstructs the construction of rigorous
ontologies is the widespread presence of ambiguity and
vagueness in natural concepts.

For example: tall, good, red, cup, mountain.

How many grains make a heap?

KR∧R — Introduction to Knowledge Represenation and Reasoning 〈 Contents 〉 KRR-2-21

Knowledge Representation

Lecture KRR-3

Classical Logic I:
Concepts and Uses of Logic

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-1

Lecture Plan

• Formal Analysis of Inference

• Propositional Logic

• Validity

• Quantification

• Uses of Logic

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-2

Logical Form

A form of an object is a structure or pattern which it exhibits.

A logical form of a linguistic expression is an aspect of its structure
which is relevant to its behaviour with respect to inference.

To illustrate this we consider a mode of inference which has been
recognised since ancient times.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-3

Logical Form of an Argument

If Leeds is in Yorkshire then Leeds is in the UK
Leeds is in Yorkshire

Therefore, Leeds is in the UK

If P then Q

P

∴ Q

P → Q

P

Q

(The Romans called this type of inference modus ponendo
ponens.)

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-4

Propositions
The preceding argument can be explained in terms of
propositional logic.

A proposition is an expression of a fact.

The symbols, P and Q, represent propositions and the logical
symbol ‘→ ’ is called a propositional connective.

Many systems of propositional logic have been developed. In this
lecture we are studying classical — i.e. the best established —
propositional logic.

In classical propositional logic it is taken as a principle that:

Every proposition is either true or false and not both.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-5

Complex Propositions
and Connectives

Propositional logic deals with inferences governed by the
meanings of propositional connectives. These are expressions
which operate on one or more propositions to produce another
more complex proposition.

The connectives dealt with in standard propositional logic
correspond to the natural language constructs:

• ‘. . . and . . .’,
• ‘. . . or . . .’
• ‘it is not the case that. . .’
• ‘if . . . then . . .’.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-6

Symbols for the Connectives

The propositional connectives are represented by the following
symbols:

and ∧ (P ∧ Q)

or ∨ (P ∨ Q)

if . . . then → (P → Q)

not ¬ ¬P
More complex examples:

((P ∧ Q) ∨ R), (¬P → ¬(Q ∨ R))

Brackets prevent ambiguity which would otherwise occur in a
formula such as ‘P ∧ Q ∨ R’.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-7

Propositional Formulae

We can precisely specify the well-formed formulae of propositional
logic by the following (recursive) characterisation:

• Each of a set, P, of propositional constants Pi is a formula.

• If α is a formula so is ¬α.

• If α and β are formulae so is (α ∧ β).

• If α and β are formulae so is (α ∨ β).

The propositional connectives ¬, ∧ and ∨ are respectively
called negation, conjunction and disjunction.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-8

Proposition Symbols
and Schematic Variables

The symbols P , Q etc. occurring in propositional formulae should
be understood as abbreviations for actual propositions such as
‘It is Tuesday’ and ‘I am bored’.

In defining the class of propositional formulae I used Greek letters
(α and β) to stand for arbitrary propositional formulae. These are
called schematic variables.

Schematic variables are used to refer classes of expression
sharing a common form. Thus they can be used for describing
patterns of inference.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-9

Inference Rules

An inference rule characterises a pattern of valid deduction.

In other words, it tells us that if we accept as true a number of
propositions — called premisses — which match certain patterns,
we can deduce that some further proposition is true — this is
called the conclusion.

Thus we saw that from two propositions with the forms α→ β and
α we can deduce β.
The inference from P → Q and P to Q is of this form.

An inference rule can be regarded as a special type of re-write
rule: one that preserves the truth of formulae — i.e. if the
premisses are true so is the conclusion.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-10

More Simple Examples

‘And’ Elimination

α ∧ β
α

α ∧ β
β

‘And’ Introduction
α β
α ∧ β

‘Or’ Introduction
α

α ∨ β
α

β ∨ α

‘Not’ Elimination
¬¬α
α

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-11

Logical Arguments and Proofs

A logical argument consists of a set of propositions {P1, . . . , Pn}
called premisses and a further proposition C, the conclusion.

Notice that in speaking of an argument we are not concerned with
any sequence of inferences by which the conclusion is shown to
follow from the premisses. Such a sequence is called a proof.

A set of inference rules constitutes a proof system.

Inference rules specify a class of primitive arguments which are
justified by a single inference rule. All other arguments require
proof by a series of inference steps.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-12

A 2-Step Proof

Suppose we know that ‘If it is Tuesday or it is raining John stays
in bed all day’ then if we also know that ‘It is Tuesday’ we can
conclude that ‘John is in Bed’.

Using T , R and B to stand for the propositions involved, this
conclusion could be proved in propositional logic as follows:

((T ∨ R)→ B)
T

(T ∨ R)
B

Here we have used the ‘or introduction’ rule followed by good old
modus ponens.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-13

Provability

To assert that C can be proved from premisses {P1, . . . , Pn} in a
proof system S we write:

P1, . . . , Pn `S C

This means that C can be derived from the formulae {P1, . . . , Pn}
by a series of inference rules in the proof system S.

When it is clear what system is being used we may omit the
subscript S on the ‘`’ symbol.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-14

Validity

An argument is called valid if its conclusion is a consequence of
its premisses. Otherwise it is invalid. This needs to be made more
precise:

One definition of validity is: An argument is valid if it is not possible
for its premisses to be true and its conclusion is false.

Another is: in all possible circumstances in which the premisses
are true, the conclusion is also true.

To assert that the argument from premisses {P1, . . . , Pn} to
conclusion C is valid we write:

P1, . . . , Pn |= C

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-15

Provability vs Validity

We have defined provability as a property of an argument which
depends on the inference rules of a logical proof system.

Validity on the other hand is defined by appealing directly to the
meanings of formulae and to the circumstances in which they are
true or false.

In the next lecture we shall look in more detail at the relationship
between validity and provability. This relationship is of central
importance in the study of logic.

To characterise validity we shall need some precise specification
of the ‘meanings’ of logical formulae. Such a specification is called
a formal semantics.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-16

Relations

In propositional logic the smallest meaningful expression that
can be represented is the proposition. However, even atomic
propositions (those not involving any propositional connectives)
have internal logical structure.

In predicate logic atomic propositions are analysed as consisting
of a number of individual constants (i.e. names of objects) and a
predicate, which expresses a relation between the objects.

R(a,b, c) Loves(john,mary)

With many binary (2-place) relations the relation symbol is often
written between its operands — e.g. 4 > 3.

Unary (1-place) relations are also called properties — Tall(tom).

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-17

Universal Quantification
Useful information often takes the form of statements of general
property of entities. For instance, we may know that ‘every dog
is a mammal’. Such facts are represented in predicate logic by
means of universal quantification.

Given a complex formula such as (Dog(spot)→ Mammal(spot)),
if we remove one or more instances of some individual constant
we obtain an incomplete expression (Dog(. . .)→ Mammal(. . .)),
which represents a (complex) property.

To assert that this property holds of all entities we write:

∀x[Dog(x)→ Mammal(x)]

in which ‘∀’ is the universal quantifier symbol and x is a variable
indicating which property is being quantified.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-18

An Argument Involving
Quantification

An argument such as:

Everything in Yorkshire is in the UK
Leeds is in Yorkshire

Therefore Leeds is in the UK

can now be represented as follows:

∀x[Inys(x)→ Inuk(x)]

Inys(l)

Inuk(l)

Later we shall examine quantification in more detail.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-19

Uses of Logic

Logic has always been important in philosophy and in the
foundations of mathematics and science. Here logic plays a
foundational role: it can be used to check consistency and other
basic properties of precisely formulated theories.

In computer science, logic can also play this role — it can be
used to establish general principles of computation; but it can also
play a rather different role as a ‘component’ of computer software:
computers can be programmed to carry out logical deductions.
Such programs are called Automated Reasoning systems.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-20

Formal Specification
of Hardware and Software

Since logical languages provide a flexible but very precise means
of description, they can be used as specification language for
computer hardware and software.

A number of tools have been developed which help developers go
from a formal specification of a system to an implementation.

However, it must be realised that although a system may
completely satisfy a formal specification it may still not behave
as intended — there may be errors in the formal specification.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-21

Formal Verification

As well as being used for specifying hardware or software
systems, descriptions can be used to verify properties of systems.

If Θ is a set of formulae describing a computer system and π is
a formula expressing a property of the system that we wish to
ensure (eg. π might be the formula ∀x[Employee(x)→ age(x) >

0]), then we must verify that:

Θ |= π

We can do this using a proof system S if we can show that:

Θ `S π

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-22

Logical Databases

A set of logical formulae can be regarded as a database.

A logical database can be queried in a very flexible way, since
for any formula φ, the semantics of the logic precisely specify the
conditions under which φ is a consequence of the formulae in the
database.

Often we may not only want to know whether a proposition is
true but to find all those entities for which a particular formula
containing variables holds.
e.g.

query: Located(x, y) ∧ Furniture(x) ?
Ans: 〈x = sofa1, y = lounge 〉, 〈x = table1, y = kitchen 〉, . . .

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-23

Logic and Intelligence

The ability to reason and draw consequences from diverse
information may be regarded as fundamental to intelligence.

As the principal intention in constructing a logical language is to
precisely specify correct modes of reasoning, a logical system
(i.e. a logical language plus some proof system) might in itself be
regarded as a form of Artificial Intelligence.

However, as we shall see as this course progresses, there are
many obstacles that stand in the way of achieving an ‘intelligent’
reasoning system based on logic.

KR∧R — Classical Logic I: Concepts and Uses of Logic 〈 Contents 〉 KRR-3-24

Knowledge Representation

Lecture KRR-4

Propositional Resolution

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-1

Overview

The discovery of the Resolution inference rule was a major
breakthrough in automated reasoning.

It is well-suited to computational implementation and is in most
practical cases more efficient at finding proofs than previous
systems.

(In terms of computational complexity theory, propositional
reasoning is NP Complete, however different algorithms certainly
differ in their practical efficiency.)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-2

Propositional Resolution

Consider modus ponens (φ, φ→ ψ ` ψ) with the implication re-
written as the equivalent disjunction:

φ, ¬φ ∨ ψ ` ψ

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-3

Propositional Resolution

Consider modus ponens (φ, φ→ ψ ` ψ) with the implication re-
written as the equivalent disjunction:

φ, ¬φ ∨ ψ ` ψ

This can be seen as a cancellation of φ with ¬φ.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-3

Propositional Resolution

Consider modus ponens (φ, φ→ ψ ` ψ) with the implication re-
written as the equivalent disjunction:

φ, ¬φ ∨ ψ ` ψ

This can be seen as a cancellation of φ with ¬φ.

More generally we have the rule

φ ∨ α, ¬φ ∨ β ` α ∨ β

This is the rule of (binary, propositional) resolution.

The deduced formula is called the resolvent.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-3

Special Cases

As special cases of resolution — where one resolvent is not a
disjunction — we have the following:

φ, ¬φ ∨ ψ ` ψ

¬φ, φ ∨ ψ ` ψ

¬φ, φ `

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-4

Special Cases

As special cases of resolution — where one resolvent is not a
disjunction — we have the following:

φ, ¬φ ∨ ψ ` ψ

¬φ, φ ∨ ψ ` ψ

¬φ, φ `

In the last case an inconsistency has been detected.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-4

Conjunctive Normal Form (CNF)

A literal is either an atomic proposition or the negation of an
atomic proposition.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-5

Conjunctive Normal Form (CNF)

A literal is either an atomic proposition or the negation of an
atomic proposition.

A clause is a disjunction of literals.

A CNF formula is a conjunction of clauses.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-5

Conjunctive Normal Form (CNF)

A literal is either an atomic proposition or the negation of an
atomic proposition.

A clause is a disjunction of literals.

A CNF formula is a conjunction of clauses.

Thus a CNF formula takes the form:

p01 ∧ . . . ∧ p0m0 ∧ ¬q01 ∧ . . . ∧ ¬q0n0 ∧
(p11 ∨. . .∨ p1m1 ∨ ¬q11 ∨. . .∨ ¬q1n1) ∧

: :
(pk1 ∨. . .∨ pkmk

∨ ¬qk1 ∨. . .∨ ¬qknk
)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-5

Set Representation of CNF

A conjunction of formulae can be represented by the set of its
conjuncts.

Similarly a disjunction of literals can be represented by the set of
those literals.

Thus a CNF formula can be represented as a set of sets of literals.

E.g.:
{{p}, {¬q}, {r, s}, {t,¬u,¬v}}

represents
p ∧ ¬q ∧ (r ∨ s) ∧ (t ∨ ¬u ∨ ¬v)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-6

Conversion to
Conjunctive Normal Form

Any propositional formula can be converted to CNF by repeatedly
applying the following equivalence transforms, wherever the left
hand pattern matches some sub-formula.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-7

Conversion to
Conjunctive Normal Form

Any propositional formula can be converted to CNF by repeatedly
applying the following equivalence transforms, wherever the left
hand pattern matches some sub-formula.

Rewrite → :
(φ→ ψ) =⇒ (¬φ ∨ ψ)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-7

Conversion to
Conjunctive Normal Form

Any propositional formula can be converted to CNF by repeatedly
applying the following equivalence transforms, wherever the left
hand pattern matches some sub-formula.

Rewrite → :
(φ→ ψ) =⇒ (¬φ ∨ ψ)

Move negations inwards:
¬¬φ =⇒ φ (Double Negation Elimination)
¬(φ ∨ ψ) =⇒ (¬φ ∧ ¬ψ) (De Morgan)
¬(φ ∧ ψ) =⇒ (¬φ ∨ ¬ψ) (De Morgan)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-7

Conversion to
Conjunctive Normal Form

Any propositional formula can be converted to CNF by repeatedly
applying the following equivalence transforms, wherever the left
hand pattern matches some sub-formula.

Rewrite → :
(φ→ ψ) =⇒ (¬φ ∨ ψ)

Move negations inwards:
¬¬φ =⇒ φ (Double Negation Elimination)
¬(φ ∨ ψ) =⇒ (¬φ ∧ ¬ψ) (De Morgan)
¬(φ ∧ ψ) =⇒ (¬φ ∨ ¬ψ) (De Morgan)

Distribute ∨ over ∧ :
φ ∨ (α ∧ β) =⇒ (φ ∨ α) ∧ (φ ∨ β)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-7

Complete Consistency Checking
for CNF

The resolution inference rule is refutation complete for any set of
clauses.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-8

Complete Consistency Checking
for CNF

The resolution inference rule is refutation complete for any set of
clauses.

This means that if the set is inconsistent there is a sequence
of resolution inferences culminating in an inference of the form
p,¬p ` , which demonstrates this inconsistency.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-8

Complete Consistency Checking
for CNF

The resolution inference rule is refutation complete for any set of
clauses.

This means that if the set is inconsistent there is a sequence
of resolution inferences culminating in an inference of the form
p,¬p ` , which demonstrates this inconsistency.

If the set is consistent, repeated application of these rules to
derive new clauses will eventually lead to a state where no new
clauses can be derived.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-8

Complete Consistency Checking
for CNF

The resolution inference rule is refutation complete for any set of
clauses.

This means that if the set is inconsistent there is a sequence
of resolution inferences culminating in an inference of the form
p,¬p ` , which demonstrates this inconsistency.

If the set is consistent, repeated application of these rules to
derive new clauses will eventually lead to a state where no new
clauses can be derived.

Since any propositional formula can be translated into CNF, this
gives a decision procedure for propositional logic.

(Resolution is also relatively efficient compared to many other
proof systems.)

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-8

Duplicate Factoring for Clausal
Formulae

If we represent a clause as disjunctive formula rather than a set
of literals, there is an additional rule that must be used as well as
resolution to provide a complete consistency checking procedure.

Suppose we have: p ∨ p, ¬p ∨ ¬p. The only resolvent of these
clauses is p ∨ ¬p. And by further resolutions we cannot derive
anything but these three formulae.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-9

Duplicate Factoring for Clausal
Formulae

If we represent a clause as disjunctive formula rather than a set
of literals, there is an additional rule that must be used as well as
resolution to provide a complete consistency checking procedure.

Suppose we have: p ∨ p, ¬p ∨ ¬p. The only resolvent of these
clauses is p ∨ ¬p. And by further resolutions we cannot derive
anything but these three formulae.

The solution is to employ a factoring rule to remove duplicates:
α ∨ φ ∨ β ∨ φ ∨ γ ` φ ∨ α ∨ β ∨ γ

With the set representation, this rule is not required since by
definition a set cannot have duplicate elements (so factoring is
implicit).

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-9

Giving a Resolution Proof
In the propositional case, it is quite easy to carry out resolution
proofs by hand. For example:

{A,B,¬C}, {¬A,D}, {¬B,E}, {C,E} {¬D,¬A} {¬E} }

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-10

Giving a Resolution Proof
In the propositional case, it is quite easy to carry out resolution
proofs by hand. For example:

{A,B,¬C}, {¬A,D}, {¬B,E}, {C,E} {¬D,¬A} {¬E} }

Enumerate the clauses:

1. {A,B,¬C}
2. {¬A,D}
3. {¬B,E}
4. {C,E}
5. {¬D,¬A}
6. {¬E}

Apply resolution rules:

7. {¬B} from 3 & 6
8. {C} from 4 & 6
9. {A,¬C} from 1 & 7

10. {A} from 8 & 9
11. {¬A} from 2 & 5

(duplicate ¬A deleted)
12. ∅ from 10 & 11

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-10

Determining Entailment
from Inconsistency

You may be thinking that the resolution proof method has limited
applications because it is a method for proving inconsistency. But
surely we will normally be dealing with consistent assumptions
from which we want to check whether a particular conclusion
follows.

However, when an entailment A1, ..., An |= C holds, this is
equivalent to saying that it is not possible for all the assumptions
A1, ..., An to be true, while the conclusion C is false.

Hence,
A1, ..., An |= C

iff
the formula set {A1, ..., An,¬C} is inconsistent.

KR∧R — Propositional Resolution 〈 Contents 〉 KRR-4-11

Knowledge Representation

Lecture KRR-5

Classical Logic II:
Formal Systems, Proofs and Semantics

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-1

Sequents
A sequent is an expression of the form:

α1, . . . , αm⇒ β1, . . . , βn

(where the αs and βs are logical formulae).

This asserts that:
If all of the αs are true then at least one of the βs is true.

Hence, it means the same as:

(α1 ∧ . . . ∧ αm) → (β1 ∨ . . . ∨ βn)

This notation — as we shall soon see — is very useful in
presenting inference rules in a concise and uniform way.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-2

Notation Issues
Many articles and textbooks write sequents using the notation:

α1, . . . , αm ` β1, . . . , βn

instead of α1, . . . , αm⇒ β1, . . . , βn.

(I used that notation in previous versions of my slides and notes.)

However, I believe this is confusing because the ` symbol
normally means provability. Indeed, some authors do talk about
the ‘`‘ in a sequent as though it refers to a provability relation.
But this is wrong: it functions as a special kind of connective.

The sequent calculus was orignated by Gerhard Gentzen, who
used ‘→ ‘ in his sequents (and used ‘⊃ for the implication
symbol).

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-3

Special forms of sequent

A sequent with an empty left-hand side:

⇒ β1, . . . , βn

asserts that at least one of the βs must be true without assuming
any premisses to be true.

If the simple sequent⇒ β is valid, then β is called a
logical theorem.

A sequent with an empty right-hand side: α1, . . . , αm⇒

asserts that the set of premisses {α1, . . . , αm} is inconsistent.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-4

Sequent Calculus Inference Rules
A sequent calculus inference rule specifies a pattern of reasoning
in terms of sequents rather than formulae.

Eg. a sequent calculus ‘and introduction’ is specified by:

Γ⇒ α, ∆ and Γ⇒ β, ∆ [⇒ ∧]
Γ⇒ (α ∧ β), ∆

where Γ and ∆ are any series of formulae.

In a sequent calculus we also have rules which introduce symbols
into the premisses:

α, β, Γ⇒ ∆ [∧ ⇒]
(α ∧ β), Γ⇒ ∆

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-5

Ordering Does Not Matter

The applicability of a rule to a formula depends on which side of
the⇒ it occurs on.
But the ordering of formulae on the same side does not matter.

Thus each rule can apply to either any formula on the left or any
formula on the right.

Hence, sequent calculus rules normally come in pairs, with one
being applicable to a certain kind of formula occurring on the left
(e.g. [⇒ ∧]) and the other applicable when that kind of formula
occurs on the right (e.g. [∧ ⇒]).

(We shall see this in the proof system that will be presented
shortly.)

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-6

Sequent Calculus Proof Systems
To assert that a sequent is provable in a sequent calculus system,
SC, I shall write:

SC
α1, . . . , αm⇒ β1, . . . , βn

Construing a proof system in terms of the provability of sequents
allows for much more uniform presentation than can be given in
terms of provability of conclusions from premisses.

We start by stipulating that all sequents of the form

α, Γ⇒ α, ∆

are immediately provable.

We then specify how each logical symbol can be introduced into
the left and right sides of a sequent (see next slide).

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-7

A Propositional Sequent Calculus

Rules:

Axiom
α,Γ⇒ α,∆

α, β, Γ⇒ ∆ [∧⇒]
(α ∧ β), Γ⇒ ∆

Γ⇒α,∆ and Γ⇒β,∆ [⇒∧]
Γ⇒ (α ∧ β), ∆

α,Γ⇒∆ and β,Γ⇒∆ [∨⇒]
(α ∨ β), Γ⇒ ∆

Γ⇒ α, β, ∆ [⇒∨]
Γ⇒ (α ∨ β), ∆

Γ⇒ α, ∆ [¬⇒]¬α, Γ⇒ ∆
Γ, α⇒ ∆ [⇒ ¬]

Γ⇒ ¬α, ∆

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-8

Re-Write Rules

Re-write rules, are an easy way to specify transformations of a
formula (on either side of a sequent) to an equivalent formula.

We shall write: α→ β =⇒ ¬α ∨ β [→ r.w]

as a short specification for the rules:

¬α ∨ β, Γ⇒ ∆ [→ r.w.]
α→ β, Γ⇒ ∆

Γ⇒ ¬α ∨ β, ∆ [→ r.w.]
Γ⇒ α→ β, ∆

Exercises:
1. Show that the rules [∨ ⇒] and [⇒ ∨] can be replaced by the
rewrite rule α ∨ β =⇒ ¬(¬α ∧ ¬β)

2. Specify rules for [→⇒] and [⇒ →] that directly eliminate the
→ connective without replacing it by an equivalent form.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-9

Sequent Calculus Proofs

The beauty of the sequent calculus system is its reversibility.

To test whether a sequent, Γ⇒ ∆, is provable we simply apply
the symbol introduction rules backwards. Each time we apply a
rule, one connective is eliminated. With some rules two sequents
then have to be proved (the proof branches) but eventually
every branch will terminate in a sequent containing only atomic
propositions. If all these final sequents are axioms, then Γ⇒ ∆ is
proved, otherwise it is not provable.

Note that the propositional sequent calculus rules can be applied
in any order.

This calculus is easy to implement in a computer program.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-10

Proof Example 1

(P → Q), P ⇒ Q

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-11

Proof Example 2

¬(P ∧ ¬Q)⇒ (P → Q)

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-12

Proof Example 3

((P ∨ Q) ∨ R), (¬P ∨ S), ¬(Q ∧ ¬S)⇒ (R ∨ S)

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-13

Formal Semantics

We have seen that a notion of validity can be defined
independently of the notion of provability:

An argument is valid if it is not possible for its premisses to be true
and its conclusion is false.

We could make this precise if we could somehow specify the
conditions under which a logical formulae is true.

Such a specification is called a formal semantics or an
interpretation for a logical language.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-14

Interpretation of
Propositional Calculus

To specify a formal semantics for propositional calculus we take
literally the idea that ‘a proposition is either true or false’.

We say that the semantic value of every propositional formula is
one of the two values T or F — called truth-values.

For the atomic propositions this value will depend on the particular
fact that the proposition asserts and whether this is true. Since
propositional logic does not further analyse atomic propositions
we must simply assume there is some way of determining the
truth values of these propositions.

The connectives are then interpreted as truth-functions which
completely determine the truth-values of complex propositions in
terms of the values of their atomic constituents.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-15

Truth-Tables

The truth-functions corresponding to the propositional connectives
¬, ∧ and ∨ can be defined by the following tables:

α ¬α
F T
T F

α β (α∧β)
F F F
F T F
T F F
T T T

α β (α∨β)
F F F
F T T
T F T
T T T

These give the truth-value of the complex proposition formed
by the connective for all possible truth-values of the component
propositions.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-16

The Truth-Function for ‘→’

The truth-function for ‘→ ’ is defined so that a formulae (α→ β)

is always true except when α is true and β is false:

α β (α→ β)

F F T
F T T
T F F
T T T

So the statement ‘If logic is interesting then pigs can fly’ is true if
either ‘Logic is interesting’ is false or ‘Pigs can fly is true’.

Thus a formula (α→ β) is truth-functionally equivalent to
(¬α ∨ β).

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-17

Propositional Models

A propositional model for a propositional calculus in which the
propositions are denoted by the symbols P1, . . . , Pn, is a
specification assigning a truth-value to each of these proposition
symbols. It might by represented by, e.g.:

{〈P1 = T〉, 〈P2 = F〉, 〈P3 = F〉, 〈P4 = T〉, . . .}

Such a model determines the truth of all propositions built up
from the atomic propositions P1, . . . , Pn. (The truth-value of the
atoms is given directly and the values of complex formulae are
determined by the truth-functions.)

If a model,M, makes a formula, φ, true then we say that
M satisfies φ.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-18

Validity in terms of Models

Recall that an argument’s being valid means that: in all possible
circumstances in which the premisses are true the conclusion is
also true.

From the point of view of truth-functional semantics each model
represents a possible circumstance — i.e. a possible set of truth
values for the atomic propositions.

To assert that an argument is truth-functionally valid we write

P1, . . . , Pn |=TF C

and we define this to mean that ALL models which satisfy ALL of
the premisses, P1, . . . , Pn also satisfy the conclusion C.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-19

Soundness and Completeness

A proof system is complete with respect to a formal semantics if
every argument which is valid according to the semantics is also
provable using the proof system.

A proof system is sound with respect to a formal semantics if
every argument which is provable with the system is also valid
according to the semantics.

It can be shown that the system of sequent calculus rules, SC,
is both sound and complete with respect to the truth-functional
semantics for propositional formulae.

Thus,
SC

Γ⇒ C if and only if Γ |=TF C.

(How this can be show is beyond the scope of this course.)

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-20

More about Quantifiers

We shall now look again at the notation for expressing
quantification and what it means.

First suppose, φ(. . .) expresses a property — i.e. it is a predicate
logic formulae with (one or more occurrences of) a name
removed.

If we want say that something exists which has this property we
write:

∃x[φ(x)]

‘∃’ being the existential quantifier symbol.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-21

Multiple Quantifiers

Consider the sentence: ‘Everybody loves somebody’ We can
consider this as being formed from an expression of the form
loves(john,mary) by the following stages.

First we remove mary to form the property loves(john, . . .) which
we existentially quantify to get: ∃x[loves(john, x)]

Then by removing john we get the property ∃x[loves(. . . , x)]

which we quantify universally to end up with:

∀y[∃x[loves(y, x)]]

Notice that each time we introduce a new quantifier we must
use a new variable letter so we can tell what property is being
quantified.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-22

Defining ∃ in Terms of ∀

We shall shortly look at sequent rules for handling the universal
quantifier.

Predicate logic formulae will in general contain both universal
(∀) and existential (∃) quantifiers. However, in the same way
that in propositional logic we saw that (α→ β) can be replaced
by (¬α ∨ β), the existential quantifier can be eliminated by the
following re-write rule.

∃υ[φ(υ)] =⇒ ¬∀υ[¬φ(υ)]

These two forms of formula are equivalent in meaning.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-23

The Sequent Rule for⇒ ∀
Γ⇒ φ(κ), ∆

[⇒ ∀ *]
Γ⇒ ∀υ[φ(υ)], ∆

The * indicates a special condition:
The constant κ must not occur anywhere else in the
sequent.

This restriction is needed because if κ occurred in another
formulae of the sequent then it could be that φ(κ) is a
consequence which can only be proved in the special case of κ.

On the other hand if κ is not mentioned elsewhere it can be
regarded as an arbitrary object with no special properties.
If the property φ(. . .) can be proven true of an arbitrary object it
must be true of all objects.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-24

An example

As an example we now prove that the formula ∀x[P (x) ∨ ¬P (x)]

is a theorem of predicate logic. This formula asserts that every
object either has or does not have the property P (. . .).

P (a)⇒ P (a)
[⇒ ¬]⇒ P (a), ¬P (a)

[⇒ ∨]⇒ (P (a) ∨ ¬P (a))
[⇒ ∀]⇒ ∀x[P (x) ∨ ¬P (x)]

Here the (reverse) application of the [⇒ ∀] rule could have been
used to introduce not only a but any name, since no names occur
on the LHS of the sequent.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-25

Another Example

Consider the follwing illegal application of [⇒ ∀]:

P (b)⇒ P (b)]
[⇒ ∀ †]

P (b)⇒ ∀x[P (x)]

† This is an incorrect application of the rule, since b already occurs
on the LHS of the sequent.

(Just because b has the property P (. . .) we cannot conclude that
everything has this property.)

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-26

A Sequent Rule for ∀⇒
A formula of the form ∀υ[φ(υ)] clearly entails φ(κ) for any name κ.
Hence the following sequent rule clearly preserves validity:

φ(κ), Γ⇒ ∆
[∀⇒]∀υ[φ(υ)], Γ⇒ ∆

But, the formulae φ(κ) makes a much weaker claim than ∀υ[φ(υ)].
This means that this rule is not reversible since, the bottom
sequent may be valid but not the top one.

Consider the case:
F (a)⇒ (F (a) ∧ F (b))

[∀⇒]∀x[F (x)]⇒ (F (a) ∧ F (b))

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-27

A Reversible Version

A quantified formula ∀υ[φ(υ)] has as consequences all formulae
of the form φ(κ); and, in proving a sequent involving a universal
premiss, we may need to employ many of these instances.

A simple way of allowing this is by using the following rule:

φ(κ), ∀υ[φ(υ)], Γ⇒ ∆
[∀⇒]∀υ[φ(υ)], Γ⇒ ∆

When applying this rule backwards to test a sequent we find
a universal formulae on the LHS and add some instance of this
formula to the LHS.

Note that the universal formula is not removed because we may
later need to apply the rule again to add a different instance.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-28

An Example Needing 2 Instantiations

We can now see how the sequent we considered earlier can be
proved by applying the [∀⇒] rule twice, to instantiate the same
universally quantified property with two different names.

F (a), . . .⇒F (a) and . . . , F (b), . . .⇒F (b)
[⇒ ∧]

F (a), F (b),∀x[F (x)]⇒ (F (a) ∧ F (b))
[∀⇒]

F (a), ∀x[F (x)]⇒ (F (a) ∧ F (b))
[∀⇒]∀x[F (x)]⇒ (F (a) ∧ F (b))

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-29

Termination Problem

We now have the problem that the (reverse) application of [∀⇒]

results in a more complex rather than a simpler sequent.

Furthermore, in any application of [∀⇒] we must choose one of
(infinitely) many names to instantiate.

Although there are various clever things that we can do to pick
instances that are likely to lead to a proof, these problems are
fundamentally insurmountable.

This means that unlike with propositional sequent calculus, there
is no general purpose automaitc procedure for testing the validity
of sequents containing quantified formulae.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-30

Decision Procedures

A decision procedure for some class of problems is an algorithm
which can solve any problem in that class in a finite time (i.e. by
means of a finite number of computational steps).

Generally we will be interested in some infinite class of similar
problems such as:

1. problems of adding any two integers together

2. problems of solving any polynomial equation

3. problems of testing validity of any propositional logic sequent

4. problems of testing validity of any predicate logic sequent

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-31

Decidability

A class of problems is decidable if there is a decision procedure
for that class; otherwise it is undecidable.

Problem classes 1–3 of the previous slide are decidable, whereas
class 4 is known to be undecidable.

Undecidability of testing validity of entailments in a logical
language is clearly a major problem if the language is to be used
in a computer system: a function call to a procedure used to test
entailments will not necessarily terminate.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-32

Semi-Decidability

Despite the fact that predicate logic is undecidable, the rules that
we have given for the quantifiers to give us a complete proof
system for predicate logic.

Furthermore, it is even possible to devise a strategy for picking
instants in applying the [∀⇒] rule, such that every valid sequent
is provable in finite time.

However, there is no procedure that will demonstrate the invalidity
of every invalid sequent in finite time.

A problem class, where we want a result Yes or No for each
problem, is called (positively) semi-decidable if every positive
case can be verified in finite time but there is no procedure which
will refute every negative case in finite time.

KR∧R — Classical Logic II: Formal Systems, Proofs and Semantics 〈 Contents 〉 KRR-5-33

Knowledge Representation

Lecture KRR-6

Classical Logic III:
Representation in First-Order Logic

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-1

First-Order Logic
As we have seen First-Order Logic extends Propositional Logic in
two ways:

• The meanings of ‘atomic’ propositions may be represented
in terms of properties and relations holding among named
objects.

• Expressive power is further increased by the use of variables
and ‘quantifiers’, which can be used to represent generalised
or non-specific information.

(Note: a quantifier is called first-order if its variable ranges over
individual entities of a domain. Second-order quantification is
where the quantified variable ranges over sets of entities. In this
course we shall restrict our attention to the first-order case.)

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-2

Terminology

The terms predicate, relation, and property are more or less
equivalent.

‘Property’ tends to imply a predicate with exactly one argument
(e.g. P (x), Red(x), Cat(x)).

‘Relation’ tends to imply a predicate with at least two arguments
(e.g. R(x, y), Taller(x, y), Gave(x, y, z)).

The term ‘Predicate’ does not usually imply anything about the
number of arguments (athough occasionally it is used to imply
just one argument).

(First-Order Logic is sometimes referred to as ‘Predicate Logic’.)

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-3

Symbols of First-Order Logic
First-order logic employs the following symbols:

• Predicate symbols each with a fixed arity (i.e. number of
arguments): P , Q, R, Red, Taller ...

• Constants (names of particular individuals): a, b, john, leeds, ...

• Variable symbols: x, y, z, u, v, ...

• (Truth-Functional) Connectives — unary: ¬,
binary: ∧ , ∨ , → , ↔

• Quantifiers: ∀, ∃

• The equality relation: = (First-Order logic may be
used with or without equality.)

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-4

Formulae of First-Order Logic

An atomic formula is an expression of the form:

ρ(α1, ..., αn) or (α1 = α2)

where ρ is a relation symbol of arity n, and each αi is either a
constant or a variable.

A first-order logic formula is either an atomic formula or a (finite)
expression of one of the forms:

¬α, (α κ β), ∀x[α], ∃x[α]

where α and β are first-order formulae and κ is any of the binary
connectives (∧ , ∨ , → or ↔).

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-5

Restrictions on Quantification
Although the standard semantics for first-order logic will assign a
meaning to any formula fitting the stipulation on the previous slide,
sensible formulae satisfy some further conditions:

• For every quantification ∀ξ[α] or ∃ξ[α] there is at least one
further occurrence of the variable ξ in α.

• No quantification occurs within the scope of another
quantification using the same variable.

• Every variable occurs within the scope of a quantification using
that variable.

(The scope of a symbol σ in formula φ is the smallest sub-
expression of φ which contains σ and is a first-order formula.)

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-6

Simple Examples
using Relations and Quantifiers

Tom talks to Mary TalksTo(tom,mary)

Tom talks to himself TalksTo(tom, tom)

Tom talks to everyone ∀x[TalksTo(tom, x)]

Everyone talks to tom ∀x[TalksTo(x, tom)]

Tom talks to no one ¬∃x[TalksTo(tom, x)]

Everyone talks to themself ∀x[TalksTo(x, x)]

Only Tom talks to himself ∀x[TalksTo(x, x)↔ (x = tom)]

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-7

Typical Forms of Quantification

All frogs are green:
∀x[F (x)→ G(x)]

Some frogs are poisonous:

∃x[F (x) ∧ P (x)]

No frogs are silver:
¬∃x[F (x) ∧ S(x)]

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-8

Representing Numbers

In the standard predicate logic, we only have two types of
quantifier:

∀x[φ(x)] and ∃x[φ(x)]

How can we represent a statement such as ‘I saw two birds’ ?

What about
∃x∃y[Saw(i, x) ∧ Saw(i, y)] ?

This doesn’t work. Why?

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-9

At Least n

For any natural number n we can specify that there are at least n
things satisfying a given condition.

John owns at least two dogs:

∃x∃y[Dog(x) ∧ Dog(y) ∧ ¬(x = y)

∧ Owns(john, x) ∧ Owns(john, y)]

John owns at least three dogs:

∃x∃y∃z[Dog(x) ∧ Dog(y) ∧ Dog(z) ∧
¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z) ∧

Owns(john, x) ∧ Owns(john, y) ∧ Owns(john, z)]

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-10

At Most n

Every student owns at most one computer:

∀x[Student(x)→ ¬∃y∃z[Comp(y) ∧ Comp(z) ∧ ¬(y = z)

∧ Owns(x, y) ∧ Owns(x, z)]]

or equivalently

∀x∀y∀z[(Student(x) ∧ Comp(y) ∧ Comp(z) ∧
∧ Owns(x, y) ∧ Owns(x, z)) → (y = z)]

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-11

Exactly n

To state that a property holds for exactly n objects, we need to
assert that it holds for at least n objects, but deny that it holds for
at least n+ 1 objects:

‘A triangle has (exactly) 3 sides’:

∀t[Triangle(t)→
(∃x∃y∃z[SideOf(x, t) ∧ SideOf(y, t) ∧ SideOf(z, t)

∧ ¬(x = y) ∧ ¬(y = z) ∧ ¬(x = z)]

∧
¬∃x∃y∃z∃w[SideOf(x,t)∧SideOf(y,t)∧SideOf(z,t)∧SideOf(w,t)

∧ ¬(x = y) ∧ ¬(y = z) ∧ ¬(x = z)

∧ ¬(w = x) ∧ ¬(w = y) ∧ ¬(w = z)]

)

]

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-12

Other Ways to Represent Numbers

As is shown by the last slide, representing numbers in pure first-
order logic gets increasingly complex as the numbers increase.

We can introduce notations as shorthand (‘syntactic sugar’) in
place of these formulations. For example one could write:

∃>2 x[Φ(x)] ∃<4 x[Φ(x)] ∃3 x[Φ(x)]

meaning that: at least 3 or at most 3 or exactly 3 different things
have the property Φ.

Also, it is common to write ∃!x[Φ(x)] to mean there is exactly one
thing with property Φ(x).

Since these notations can be translated into equivalent first-order
formulae, we have the advantage that we can use the normal first-
order inference rules after making the translation.

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-13

Using Functions

Another very common extension to the basic first-order logic is
the use of function symbols. We can write f(x) to represent
some object that is uniquely determined by x or, more generally
g(x1, . . . , xn) to represent something determined by objects
x1, . . . , xn.

For example, mother(x), could refer to the mother of x;
or mid(p1, p2), the point mid way between points p1 and p2.

Using a function, we can concisely assert that everyone loves their
mother, with the formula:

∀x[Loves(x,mother(x))]

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-14

Doing without Functions

In fact, like the number notations mentioned above, the use
of functions does not actually add expressive power to the
representation. Instead of ∀x[Loves(x,mother(x))], we could
represent motherhood by a relation and write:

∀x∀y[IsMotherOf(x, y)→ Loves(y, x)]]] ∧
∀x∃y[IsMotherOf(y, x)] ∧
∀x∀y∀z[(IsMotherOf(x, z) ∧ Mother(y, z))→ (x = y)]

Here, we see that, to fully capture the meaning of the function
notation, we need to add further axioms to ensure that everyone
has a mother and not more than one mother.

(Here we assume that we are only dealing with people or animals,
and we don’t care whether they are alive or dead.)

KR∧R — Representation in First-Order Logic 〈 Contents 〉 KRR-6-15

Knowledge Representation

Lecture KRR-7

Classical Logic IV:
Semantics for Predicate Logic

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-1

The Domain of Individuals
Whereas a model for propositional logic assigns truth values
directly to propositional variables, in predicate logic the truth of
a proposition depends on the meaning of its constituent predicate
and argument(s).
The arguments of a predicate may be either constant names
(a, b, . . .) or variables (u, v, . . ., z).

To formalise the meaning of these argument symbols each
predicate logic model is associated with a set of entities that
is usually called the domain of individuals or the domain of
quantification. (Note: Individuals may be anything — either
animate or inanimate, physical or abstract.)

Each constant name denotes an element of the domain of
individuals and variables are said to range over this domain.

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-2

Semantics for Property Predication

Before proceeding to a more formal treatment of predicate, I
briefly describe the semantics of property predication in a semi-
formal way.

A property is formalised as a 1-place predicate — i.e. a predicate
applied to one argument.

For instance Happy(jane) ascribes the property denoted by
Happy to the individual denoted by jane.

To give the conditions under which this assertion is true, we
specify that Happy denotes the set of all those individuals in the
domain that are happy.

Then Happy(jane) is true just in case the individual denoted by
jane is a member of the set of individuals denoted by Happy.

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-3

Predicate Logic Model Structures

A predicate logic model is a tuple

M = 〈D, δ〉 ,

where:

• D is a non-empty set (the domain of individuals) —
i.e. D = {i1, i2, . . .}, where each in represents some entity.

• δ is an assignment function, which gives a value to each
constant name and to each predicate symbol.

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-4

The Assignment Function δ

The kind of value given to a symbol σ by the assignment function
δ depends on the type of σ:

• If σ is a constant name then δ(σ) is simply an element of D.
(E.g. δ(john) denotes an individual called ‘John’.)

• If σ is a property, then δ(σ) denotes a subset of the elements of
D.
This is the subset of all those elements that possess the
property σ. (E.g. δ(Red) would denote the set of all red things
in the domain.)

• continued on next slide for case where σ is a relation symbol.

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-5

The Assignment Function
for Relations
• If σ is a binary relation, then δ(σ) denotes a set of pairs of

elements of D.
For example we might have

δ(R) = {〈i1, i2〉, 〈i3, i1〉, 〈i7, i2〉, . . .}
The value δ(R) denotes the set of all pairs of individuals that
are related by the relation R.
(Note that we may have 〈im, in〉 ∈ δ(R) but 〈in, im〉 6∈ δ(R) —
e.g. John loves Mary but Mary does not love John.)

• More generally, if σ is an n-ary relation, then δ(σ) denotes a set
of n-tuples of elements of D.
(E.g. δ(Between) might denote the set of all triples of points,
〈px, py, pz〉, such that py lies between px and pz.)

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-6

The Semantics of Predication
We have seen how the denotation function δ assigns a value to
each individual constant and each relation symbol in a predicate
logic language.

The purpose of this is to define the conditions under which a
predicative proposition is true.
Specifically, a predication of the form ρ(α1, . . . αn) is true
according to δ if and only if

〈δ(σ1), . . . δ(σn)〉 ∈ δ(ρ)

For instance, Loves(john,mary) is true iff the pair 〈δ(john), δ(mary)〉
(the pair of individuals denoted by the two names) is an element
of δ(Loves) (the set of all pairs, 〈im, in〉, such that im loves in).

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-7

Variable Assignments
and Augmented Models

In order to specify the truth conditions of quantified formulae we
will have to interpret variables in terms of their possible values.

Given a model M = 〈D, δ〉, Let V be a function from variable
symbols to entities in the domain D.

I will call a pair 〈M, V 〉 an augmented model, where V is a
variable assignment over the domain ofM.

If an assignment V ′ gives the same values as V to all variables
except possibly to the variable x, I write this as:

V ′ ≈(x) V .

This notation will be used in specifying the semantics of
quantification.

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-8

Truth and Denotation
in Augmented Models

We will use augmented models to specify the truth conditions of
predicate logic formulae, by stipulating that φ is true in M if and
only if φ is true in a corresponding augmented model 〈M, V 〉.

It will turn out that if a formula is true in any augmented model of
M, then it is true in every augmented model ofM. The purpose
of the augmented models is to give a denotation for variables.

From an augmented model 〈M, V 〉, whereM = 〈D, δ〉, we define
the function δV , which gives a denotation for both constant names
and variable symbols. Specifically:

• δV (α) = δ(α), where α is a constant;
• δV (ξ) = V (ξ), where ξ is a variable.

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-9

Semantics for
the Universal Quantifier

We are now in a position to specify the conditions under which a
universally quantified formula is true in an augmented model:

• ∀x[φ(x)] is true in 〈M, V 〉 iff
φ(x) is true in every 〈M, V ′〉, such that V ′ ≈(x) V .

In other words this means that ∀x[φ(x)] is true in a model just in
case the sub-formula φ(x) is true whatever entity is assigned as
the value of variable x, while keeping constant any values already
assigned to other variables in φ.

We can define existential quantification in terms of universal
quantification and negation; but what definition might we give to
define its semantics directly?

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-10

Semantics of Equality

In predicate logic, it is very common to make use of the special
relation of equality, ‘=’.

The meaning of ‘=’ can be captured by specifying axioms such as

∀x∀y[((x = y) ∧ P(x))→ P(y)]

of by means of more general inference rules such as,
from (α = β) and φ(α) derive φ(β).

We can also specify the truth conditions of equality formulae using
our augmented model structures:

• (α = β) is true in 〈M,V 〉, whereM = 〈D, δ〉,
iff δV (α) is the same entity as δV (β).

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-11

Full Semantics of Predicate Logic

• ρ(α1, . . . αn) is true in 〈M, V 〉, whereM = 〈D, δ〉,
iff 〈δV (σ1), . . . δV (σn)〉 ∈ δ(ρ).

• (α = β) is true in 〈M,V 〉, whereM = 〈D, δ〉, iff δV (α) = δV (β).

• ¬φ is true in 〈M, V 〉 iff φ is not true in 〈M, V 〉

• (φ ∧ ψ) is true in 〈M, V 〉 iff both φ and ψ are true in 〈M, V 〉

• (φ ∨ ψ) is true in 〈M, V 〉 iff either φ or ψ is true in 〈M, V 〉

• ∀x[φ(x)] is true in 〈M, V 〉 iff
φ(x) is true in every 〈M, V ′〉, such that V ′ ≈(x) V .

KR∧R — Classical Logic IV: Semantics for Predicate Logic 〈 Contents 〉 KRR-7-12

Knowledge Representation

Lecture KRR-8

The Winograd Schema Challenge

KR∧R — The Winograd Schema Challenge 〈 Contents 〉 KRR-8-1

The Winograd Schema Challenge

This challenge has been proposed as a more well-defined
alternative to the famous Turing Test. It brings many problems
of AI and KRR more sharply into focus than does the rather open-
ended Turing Test.

• Corpus of Winograd Schema problems — by Ernie Davis
http://www.cs.nyu.edu/davise/papers/WS.html

• Paper on Winograd Schema problems by Hector Levesque
http://commonsensereasoning.org/2011/papers/Levesque.

pdf

KR∧R — The Winograd Schema Challenge 〈 Contents 〉 KRR-8-2

http://www.cs.nyu.edu/davise/papers/WS.html
http://www.cs.nyu.edu/davise/papers/WS.html
http://commonsensereasoning.org/2011/papers/Levesque.pdf
http://commonsensereasoning.org/2011/papers/Levesque.pdf
http://commonsensereasoning.org/2011/papers/Levesque.pdf

Nature of the Challenge

A Winograd schema is a pair of sentences that differ in only one
or two words and that contain an ambiguity that is resolved in
opposite ways in the two sentences and requires the use of world
knowledge and reasoning for its resolution.

The schema takes its name from a well-known example by Terry
Winograd (1972)

The city councilmen refused the demonstrators a permit because
they [feared/advocated] violence.

If the word is “feared”, then “they” presumably refers to the city
council; if it is “advocated” then “they” presumably refers to the
demonstrators.

KR∧R — The Winograd Schema Challenge 〈 Contents 〉 KRR-8-3

Requirements for a good schema
In his paper, “The Winograd Schema Challenge” Hector Levesque
(2011) proposes to assemble a corpus of such Winograd
schemas that are

• easily disambiguated by the human reader (ideally, the
reader does not even notice there is an ambiguity);

• not solvable by simple techniques such as selectional
restrictions

• Google-proof; ie no statistical test over text corpora that will
reliably disambiguate.

The corpus would then be presented as a challenge for AI
programs, along the lines of the Turing test. The strengths of the
challenge are that it is more clear-cut.

KR∧R — The Winograd Schema Challenge 〈 Contents 〉 KRR-8-4

More Winograd Schemas

• The trophy would not fit into the brown suitcase because it was
too [small/large]. What was too [small/large]?

• Joan made sure to thank Susan for all the help she had
[given/received]. Who had [given/received] help?

• The large ball crashed right through the table because it was
made of [steel/styrofoam] What was made of [steel/styrofoam]?

KR∧R — The Winograd Schema Challenge 〈 Contents 〉 KRR-8-5

Knowledge Representation

Lecture KRR-9

Representing Time and Change

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-1

Lecture Overview

This lecture has the following goals:

• to demonstrate the importance of temporal information in
knowledge representation.

• to introduce two basic logical formalisms for describing time
(1st-order temporal logic and Tense Logic).

• to present two AI formalisms for representing actions and
change (STRIPS and Situation Calculus).

• to explain Frame Problem and some possible solutions.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-2

Classical Propositions are Eternal

A classical proposition is either true or false.

So it cannot be true sometimes and false at other times.

Hence a contingent statement such as ‘Tom is at the University’
does not really express a classical proposition.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-3

Classical Propositions are Eternal

A classical proposition is either true or false.

So it cannot be true sometimes and false at other times.

Hence a contingent statement such as ‘Tom is at the University’
does not really express a classical proposition.

Its truth depends on when the statement is made.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-3

Classical Propositions are Eternal

A classical proposition is either true or false.

So it cannot be true sometimes and false at other times.

Hence a contingent statement such as ‘Tom is at the University’
does not really express a classical proposition.

Its truth depends on when the statement is made.

A corresponding classical proposition would be something like:
Tom was/is/will be at the University at 11:22am 8/2/2002.

This statement, if true, is eternally true.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-3

Building Time into 1st-order Logic

We can explicitly add time references to 1st-order formulae. For
example

Happy(John, t)

could mean ‘John is happy at time t’.

In this representation each predicate is given an extra argument
place specifying the time at which it is true.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-4

Time as an Ordering of Time Points

To talk about the ordering of time points we introduce the special
relation ≤. Being a (linear) order it satisfies the following axioms.

1. ∀t1∀t2∀t3[(t1 ≤ t2 ∧ t2 ≤ t3)→ t1 ≤ t3] , (transitivity)

2. ∀t1∀t2[t1 ≤ t2 ∨ t2 ≤ t1] , (linearity)

3. ∀t1∀t2[(t1 ≤ t2 ∧ t2 ≤ t1)↔ t1 = t2], (anti-symmetry)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-5

Time as an Ordering of Time Points

To talk about the ordering of time points we introduce the special
relation ≤. Being a (linear) order it satisfies the following axioms.

1. ∀t1∀t2∀t3[(t1 ≤ t2 ∧ t2 ≤ t3)→ t1 ≤ t3] , (transitivity)

2. ∀t1∀t2[t1 ≤ t2 ∨ t2 ≤ t1] , (linearity)

3. ∀t1∀t2[(t1 ≤ t2 ∧ t2 ≤ t1)↔ t1 = t2], (anti-symmetry)

We can define a strict ordering relation by:

t1 < t2 ≡ def t1 ≤ t2 ∧ ¬(t1 = t2)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-5

Some Further Possible Axioms

Time will continue infinitely in the future:

∀t∃t′[t < t′]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-6

Some Further Possible Axioms

Time will continue infinitely in the future:

∀t∃t′[t < t′]

What does the following axiom say?

∀t1∀t2[(t1 < t2)→ ∃t3[(t1 < t3) ∧ (t3 < t2)]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-6

Some Further Possible Axioms

Time will continue infinitely in the future:

∀t∃t′[t < t′]

What does the following axiom say?

∀t1∀t2[(t1 < t2)→ ∃t3[(t1 < t3) ∧ (t3 < t2)]

This asserts the infinite divisibility of time (usually called density).

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-6

Representing Temporal Ordering

Sue is happy but will be sad:

Happy(Sue, 0) ∧ ∃t[(0 < t) ∧ Sad(Sue, t)]

Here I use 0 to stand for the present time.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-7

Representing Temporal Ordering

Sue is happy but will be sad:

Happy(Sue, 0) ∧ ∃t[(0 < t) ∧ Sad(Sue, t)]

Here I use 0 to stand for the present time.

We can describe more complex temporal constraints of a causal
nature.
E.g. ‘When the sun comes out I am happy until it rains’:

∀t[S(t)→ ∀u[(t ≤ u ∧ ¬∃r[(t ≤ r) ∧ (r ≤ u) ∧ R(r)])→ H(u)]]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-7

Another Way of Adding Time

Rather than adding time to each predicate, several AI researchers
have found it more convenient to use a special type of relation
between propositions and time points:

Holds-At(Happy(John), t)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-8

Another Way of Adding Time

Rather than adding time to each predicate, several AI researchers
have found it more convenient to use a special type of relation
between propositions and time points:

Holds-At(Happy(John), t)

Can use this to define temporal relations in a more general way.
E.g.:

∀t[Holds-At(φ, t)→ ∃t′[t ≤ t′ ∧ Holds-At(ψ, t′)]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-8

Another Way of Adding Time

Rather than adding time to each predicate, several AI researchers
have found it more convenient to use a special type of relation
between propositions and time points:

Holds-At(Happy(John), t)

Can use this to define temporal relations in a more general way.
E.g.:

∀t[Holds-At(φ, t)→ ∃t′[t ≤ t′ ∧ Holds-At(ψ, t′)]

This captures a possible specification of the relation ‘φ causes ψ’.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-8

Axioms for Holds-At

1. (Holds-At(φ, t) ∧ Holds-At(φ→ ψ, t))→ Holds-At(ψ, t)

2. ¬Holds-At(φ ∧ ¬φ, t)

3. Holds-At(φ, t) ∨ Holds-At(¬φ, t)

4. Holds-At(φ, t)↔ Holds-At(Holds-At(φ, t), t′)

5. t ≤ t′↔ Holds-At((t ≤ t′), t′′)

6. ∀t[Holds-At(φ, t′)]→ Holds-At(∀t[φ], t′)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-9

Tense Logic

Rather than quantifying over time points, it may be simpler to treat
time in terms of tense.

Pφ means that φ was true at some time in the past. Fφ means
that φ will be true at some time in the future.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-10

Tense Logic

Rather than quantifying over time points, it may be simpler to treat
time in terms of tense.

Pφ means that φ was true at some time in the past. Fφ means
that φ will be true at some time in the future.

If Jane has arrived I will visit her:

PA(j)→ FV (j)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-10

Axioms for Tense Operators

The tense operators obey certain axioms. For example:

1. Fφ→ ¬P¬Fφ

2. Pφ→ ¬F¬Pφ

3. PPφ→ Pφ

4. FFφ→ Fφ

Can you think of any more?

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-11

Prior’s Tense Logic

It is convenient to define:

φ has always been true φ will always be true
Hφ ≡ def ¬P¬φ Gφ ≡ def ¬F¬φ

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-12

Prior’s Tense Logic

It is convenient to define:

φ has always been true φ will always be true
Hφ ≡ def ¬P¬φ Gφ ≡ def ¬F¬φ

We now specify the following axioms:

1) (Hφ ∧ H(φ→ ψ))→ Hψ 2) (Gφ ∧ G(φ→ ψ))→ Gψ

3) φ→ HFφ 4) φ→ GPφ

5) Pφ→ GPφ 6) Fφ→ HFφ

7) Pφ→ H(Fφ ∨ φ ∨ Pφ) 8) Fφ→ G(Fφ ∨ φ ∨ Pφ)

9) P(φ ∨ ¬φ) 10) F(φ ∨ ¬φ)

Together with any sufficient axiom set for classical propositional
logic.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-12

Models for Tense Logics

A tense logic model is given by a set M = {. . . ,Mi, . . .}
of atemporal classical models, whose indices are ordered by a
relation ≺.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-13

Models for Tense Logics

A tense logic model is given by a set M = {. . . ,Mi, . . .}
of atemporal classical models, whose indices are ordered by a
relation ≺.

The models can be pictured as corresponding to different
moments along the time line:

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-13

Validity in Tense Logic Models

Truth values of (atemporal) classical formulae are determined by
each model as usual. A classical formula is true at index point i iff
it is true according to Mi.

Tensed formulae are interpreted by:

• Fφ is true at i iff φ is true at some j such that i ≺ j.
• Pφ is true at i iff φ is true at some j such that j ≺ i.

A tense logic formula is valid iff it is true at every index point in
every tense logic model.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-14

Reasoning with Tense Logic

Reasoning directly with tense logic is extremely difficult. We need
to combine classical propositional reasoning with substitution in
the axioms.

Exercise: try to prove that PPp→ Pp from Prior’s axioms.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-15

Reasoning with Tense Logic

Reasoning directly with tense logic is extremely difficult. We need
to combine classical propositional reasoning with substitution in
the axioms.

Exercise: try to prove that PPp→ Pp from Prior’s axioms.

I couldn’t !

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-15

Reasoning with Tense Logic

Reasoning directly with tense logic is extremely difficult. We need
to combine classical propositional reasoning with substitution in
the axioms.

Exercise: try to prove that PPp→ Pp from Prior’s axioms.

I couldn’t !

But Model Building techniques can be quite efficient.

A model is an ordered set of time points, each associated with a
set of formulae.

A proof algorithm can exhaustively search for a model satisfying
any given formula.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-15

STRIPS

The STanford Research Institute Planning System is a relatively
simple algorithm for reasoning about actions and formulating
plans.
STRIPS models a state of the world by a set of (atomic) facts.
Actions are modelled as rules for adding and deleting facts.

Specifically each action definition consists of:
for example

Action Description: move(x, loc1, loc2)

Preconditions: at(x, loc1), movable(x), free(loc2)

Delete List : at(x, loc1), free(loc2)

Add List : at(x, loc2), free(loc1)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-16

Goal-Directed Planning
The STRIPS system enables a relatively straightforward
implementation of goal-directed planning.

To find a plan to achieve a goal G we can use an algorithm of the
following form:

1. If G is already in the set of world facts we have succeeded.
2. Otherwise look for an action definition

(α, [π1, . . . , πl], [δ1, . . . , δm], [γ1, . . ., G, . . . , γn])

with G in its add list.
3. Then successively set each precondition πi as a new sub-

goal and repeat this procedure.

More complex search strategy is needed for good performance.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-17

Limitations of STRIPS

STRIPS works well in cases where the effects of actions can
be captured by simple adding and deleting of facts. However,
for general types of action that can be applied in a variety of
circumstances, the effects are often highly dependent on context.

Even with the simple action move(x,loc1,loc2) the changes in
facts involving x will depend on what other objects are near to
loc1 and loc2.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-18

Limitations of STRIPS

STRIPS works well in cases where the effects of actions can
be captured by simple adding and deleting of facts. However,
for general types of action that can be applied in a variety of
circumstances, the effects are often highly dependent on context.

Even with the simple action move(x,loc1,loc2) the changes in
facts involving x will depend on what other objects are near to
loc1 and loc2.

In general the interdependencies of even simple relationships.
Are highly complex. Consider the ways in which a relation
visible-from(x,y) can change — e.g. when crates are moved
around in a warehouse.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-18

Situation Calculus

Situation Calculus is a 1st-order language for representing
dynamically changing worlds.

Properties of a state of the world are represented by:

• holds(φ, s) meaning that ‘proposition’ φ holds in state s.

In the terminology of Sit Calc φ is called a fluent.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-19

Actions in Sit Calc

In Sit Calc all changes are the result of actions:

• result(α, s) denotes the state resulting from doing action α

when in state s.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-20

Actions in Sit Calc

In Sit Calc all changes are the result of actions:

• result(α, s) denotes the state resulting from doing action α

when in state s.

We can write formulae such as:

holds(Light-Off, s)→ holds(Light-On, result(switch, s))

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-20

Effect Axioms
Effect axioms specify fluents that must hold in the state resulting
from an action of some given type.

Simple effect axioms can be written in the form:

holds(φ, result(α, s))← poss(α, s)

The reverse arrow is used so that the most important part is at the
beginning. It also corresponds to form used in Prolog implemen-
tations.

Here poss is an auxiliary predicate that is often used to separate
the preconditions of an action from the rest of the formula.

holds(has(y, i), result(give(x, i, y), s))← poss(give(x, i, y), s)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-21

Precondition Axioms

Preconditions tell us what fluents must hold in a situation for it to
be possible to carry out a given type of action in that situation.

If we are using the poss predicate, a simple precondition takes the
form:

poss(α, s)← holds(φ, s)

Example:

poss(give(x, i, y), s)← holds(has(x, i), s)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-22

More Examples

poss(mend(x, i), s)←

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-23

More Examples

poss(mend(x, i), s)←

holds(has(x, i), s) ∧ holds(broken(i), s) ∧ holds(has(x,glue), s)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-23

More Examples

poss(mend(x, i), s)←

holds(has(x, i), s) ∧ holds(broken(i), s) ∧ holds(has(x,glue), s)

poss(steal(x, i, y), s)←

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-23

More Examples

poss(mend(x, i), s)←

holds(has(x, i), s) ∧ holds(broken(i), s) ∧ holds(has(x,glue), s)

poss(steal(x, i, y), s)←

holds(has(y, i), s) ∧ holds(asleep(y), s) ∧ holds(stealthy(x), s)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-23

Domain Axioms

As well as axioms describing the transition from one state to
another actions and their effects, a Situation Calculus theory will
often include domain axioms specifying conditions that must hold
in every possible situation.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-24

Domain Axioms

As well as axioms describing the transition from one state to
another actions and their effects, a Situation Calculus theory will
often include domain axioms specifying conditions that must hold
in every possible situation.

As well as fluents, a Sit Calc theory may utilise static predicates
expressing properties that do not change.

ConnectedByDoor(kitchen,dining room,door1)

∀r1r2d[ConnectedByDoor(r1, r2, d)→ ConnectedByDoor(r2, r1, d)]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-24

Domain Axioms
As well as axioms describing the transition from one state to
another actions and their effects, a Situation Calculus theory will
often include domain axioms specifying conditions that must hold
in every possible situation.

As well as fluents, a Sit Calc theory may utilise static predicates
expressing properties that do not change.

ConnectedByDoor(kitchen,dining room,door1)

∀r1r2d[ConnectedByDoor(r1, r2, d)→ ConnectedByDoor(r2, r1, d)]

Other domain axioms may express relationships between fluents
that must hold in every situation.

∀s∀x[¬(holds(happy(x), s) ∧ holds(sad(x), s)]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-24

Frame Axioms

Frame axioms tell us what fluents do not change when an action
takes place.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-25

Frame Axioms

Frame axioms tell us what fluents do not change when an action
takes place.

When you’re dead you stay dead:

holds(dead(x), result(α, s))← holds(dead(x), s)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-25

Frame Axioms

Frame axioms tell us what fluents do not change when an action
takes place.

When you’re dead you stay dead:

holds(dead(x), result(α, s))← holds(dead(x), s)

Giving something won’t mend it:

holds(broken(i), result(give(x, i, y), s))← holds(broken(i), s)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-25

Frame Axioms
Frame axioms tell us what fluents do not change when an action
takes place.

When you’re dead you stay dead:

holds(dead(x), result(α, s))← holds(dead(x), s)

Giving something won’t mend it:

holds(broken(i), result(give(x, i, y), s))← holds(broken(i), s)

More generally, we might specify that no action apart from mend

can mend something:

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-25

holds(broken(i), result(α, s))←
holds(broken(i), s) ∧ ¬∃x[α = mend(x, i)]

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-26

The Frame Problem

Intuitively it would seem that, if we specify all the effects of an
action, we should be able to infer what it doesn’t affect.

We would like to have a general way of automatically deriving
reasonable frame conditions.

The frame problem is that no completely general way of doing this
has been found.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-27

Solving the Frame Problem

The AI literature contains numerous suggestions for solving the
frame problem.

None commands universal acceptance.

There are two basic approaches:

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-28

Solving the Frame Problem

The AI literature contains numerous suggestions for solving the
frame problem.

None commands universal acceptance.

There are two basic approaches:

• Syntactic derivation of frame axioms from effect axioms.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-28

Solving the Frame Problem

The AI literature contains numerous suggestions for solving the
frame problem.

None commands universal acceptance.

There are two basic approaches:

• Syntactic derivation of frame axioms from effect axioms.

• Use of Non-Monotonic reasoning techniques.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-28

Ramifications

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-29

Events and Intervals

Tense logic and logics with explicit time variables represent
change in terms of what is true along a series of time points. They
have no way of saying that some event or process happens over
some interval of time.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-30

Events and Intervals

Tense logic and logics with explicit time variables represent
change in terms of what is true along a series of time points. They
have no way of saying that some event or process happens over
some interval of time.
A conceptualisation of time in terms of intervals and events was
proposed by James Allen (and also Pat Hayes) in the early 80’s.

The formalism contains variables standing for temporal intervals
and terms denoting types of event.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-30

Events and Intervals

Tense logic and logics with explicit time variables represent
change in terms of what is true along a series of time points. They
have no way of saying that some event or process happens over
some interval of time.
A conceptualisation of time in terms of intervals and events was
proposed by James Allen (and also Pat Hayes) in the early 80’s.

The formalism contains variables standing for temporal intervals
and terms denoting types of event.
We can use basic expressions of the form:

Occurs(action, i)

saying that action occurs over time interval i.

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-30

Allen’s Interval Relations

Allen also identified 13 qualitatively different relations that can
hold between termporal intervals:

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-31

Ordering Events

By combining the occurs relation with the interval relations we can
describe the ordering of events:

Occurs(get dressed, i)

Occurs(travel to work, j)

Occurs(read newspaper, k)

Before(i, j)

During(k, j)

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-32

Ordering Events

By combining the occurs relation with the interval relations we can
describe the ordering of events:

Occurs(get dressed, i)

Occurs(travel to work, j)

Occurs(read newspaper, k)

Before(i, j)

During(k, j)

What can we infer about the temporal relation between
get dressed and read newspaper ?

KR∧R — Representing Time and Change 〈 Contents 〉 KRR-9-32

Knowledge Representation

Lecture KRR-10

Prolog

KR∧R — Prolog 〈 Contents 〉 KRR-10-1

Reasons to Learn a Bit of Prolog

• The Logic Programming paradigm is radically different from
the traditional imperative style; so knowledge of Prolog helps
develop a broad appreciation of programming techniques.

KR∧R — Prolog 〈 Contents 〉 KRR-10-2

Reasons to Learn a Bit of Prolog

• The Logic Programming paradigm is radically different from
the traditional imperative style; so knowledge of Prolog helps
develop a broad appreciation of programming techniques.

• Although not usually employed as a general purpose
programming language, Prolog is well-suited for certain tasks
and is used in many research applications.

KR∧R — Prolog 〈 Contents 〉 KRR-10-2

Reasons to Learn a Bit of Prolog

• The Logic Programming paradigm is radically different from
the traditional imperative style; so knowledge of Prolog helps
develop a broad appreciation of programming techniques.

• Although not usually employed as a general purpose
programming language, Prolog is well-suited for certain tasks
and is used in many research applications.

• Prolog has given rise to the paradigm of Constraint
Programming which is used commercially in scheduling and
optimisation problems.

KR∧R — Prolog 〈 Contents 〉 KRR-10-2

Pitfalls in Learning Prolog

One reason that Prolog is not more widely used is that a beginner
can often encounter some serious difficulties.

Trying to crowbar an imperative algorithm into Prolog syntax will
generally result in complex, ugly and often incorrect code. A good
Prolog solution must be formulated from the beginning in the logic
programming idiom. Forget loops and assignments and think in
terms of Prolog concepts.

KR∧R — Prolog 〈 Contents 〉 KRR-10-3

Pitfalls in Learning Prolog

One reason that Prolog is not more widely used is that a beginner
can often encounter some serious difficulties.

Trying to crowbar an imperative algorithm into Prolog syntax will
generally result in complex, ugly and often incorrect code. A good
Prolog solution must be formulated from the beginning in the logic
programming idiom. Forget loops and assignments and think in
terms of Prolog concepts.

Another difficulty is in getting to grips the execution sequence
of Prolog programs. This is subtle because Prolog is written
declaratively. Nevertheless, its search for solutions does proceed
in a determinate fashion and unless code is carefully ordered it
may search forever, even when a solution exists.

KR∧R — Prolog 〈 Contents 〉 KRR-10-3

Prolog Structures

You should be aware that coding for many kinds of application
is facilitated by representing data in a structured way. Prolog
(like Lisp) provides generic syntax for structuring data that can
be applied to all manner of particular requirements.

A complex term takes the following form:
operator(arg1, ..., argN)

Where arg1, ..., argN may also be complex terms.

KR∧R — Prolog 〈 Contents 〉 KRR-10-4

Prolog Structures

You should be aware that coding for many kinds of application
is facilitated by representing data in a structured way. Prolog
(like Lisp) provides generic syntax for structuring data that can
be applied to all manner of particular requirements.

A complex term takes the following form:
operator(arg1, ..., argN)

Where arg1, ..., argN may also be complex terms.

Although such a term looks like a function, it is not evaluated by
applying the function to the arguments. Instead Prolog tries to
find values for which it is true by matching it to the facts and rules
given in the code.

KR∧R — Prolog 〈 Contents 〉 KRR-10-4

Pattern Matching and Equality

When evaluating a query containing one or more variables, Prolog
tries to match the query to a stored (or derivable) fact, in which
variables may be replaced by particular instances.

In fact the matching always goes both ways. If we have the code:

likes(X, X).

Then the query ?- likes(john, john) will give yes, even
though there are no facts given about john, because the query
matches the general fact — which says that everyone likes
themself.

KR∧R — Prolog 〈 Contents 〉 KRR-10-5

Matching Complex Terms

Prolog will also find matches of complex terms as long as there is
a instantiation of variables that makes the terms equivalent:

loves(brother(X), daughter(tom)).

?- loves(brother(susan), Y).

X = susan,

Y = daughter(tom)

KR∧R — Prolog 〈 Contents 〉 KRR-10-6

Matching Complex Terms

Prolog will also find matches of complex terms as long as there is
a instantiation of variables that makes the terms equivalent:

loves(brother(X), daughter(tom)).

?- loves(brother(susan), Y).

X = susan,

Y = daughter(tom)
We can make Prolog perform a match using the equality operator:

?- f(g(X), this, X) = f(Z, Y, that).

X = that,

Y = this,

Z = g(that)

Note that no evaluation of f and g takes place.

KR∧R — Prolog 〈 Contents 〉 KRR-10-6

Coding by Matching

A surprising amount of functionality can be achieved simply by
pattern matching.

Consider the following code:

vertical(line(point(X,Y), point(X,Z))).

horizontal(line(point(X,Y), point(Z,Y))).

Here we are assuming a representation of line objects as pairs of
point objects, which in turn are pairs of coordinates.

KR∧R — Prolog 〈 Contents 〉 KRR-10-7

Coding by Matching

A surprising amount of functionality can be achieved simply by
pattern matching.

Consider the following code:

vertical(line(point(X,Y), point(X,Z))).

horizontal(line(point(X,Y), point(Z,Y))).

Here we are assuming a representation of line objects as pairs of
point objects, which in turn are pairs of coordinates.

Given just these simple facts, we can ask queries such as:

?- vertical(line(point(5,17), point(5,23))).

KR∧R — Prolog 〈 Contents 〉 KRR-10-7

The List Constructor Operator

The basic syntax that is used either to construct or to break up
lists in Prolog is the head-tail structure:

[Head | Tail]

Here Head is any term. It could be an atom, a variable or some
complex structure.

Tail is either a variable or any kind of list structure.

The structure [Head | Tail] denotes the list formed by adding
Head at the front of the list Tail .

Thus [a | [b,c,d]] denotes the list [a,b,c,d].

KR∧R — Prolog 〈 Contents 〉 KRR-10-8

Matching Lists

Consider the following query:

?- [H | T] = [a, b, c, d, e].

KR∧R — Prolog 〈 Contents 〉 KRR-10-9

Matching Lists

Consider the following query:

?- [H | T] = [a, b, c, d, e].

This will return:

Head = a,

Tail = [b,c,d,e]

KR∧R — Prolog 〈 Contents 〉 KRR-10-9

Matching Lists

Consider the following query:

?- [H | T] = [a, b, c, d, e].

This will return:

Head = a,

Tail = [b,c,d,e]

Note that this is identical in meaning to:

?- [a, b, c, d, e] = [H | T].

KR∧R — Prolog 〈 Contents 〉 KRR-10-9

Recursion Over Lists

The following example is of utmost significance in illustrating
the nature of Prolog. It combines, pattern matching, lists and
recursive definition. Learn this:

in_list(X, [X | _]).

in_list(X, [_ | Rest]) :- in_list(X, Rest).

KR∧R — Prolog 〈 Contents 〉 KRR-10-10

Recursion Over Lists

The following example is of utmost significance in illustrating
the nature of Prolog. It combines, pattern matching, lists and
recursive definition. Learn this:

in_list(X, [X | _]).

in_list(X, [_ | Rest]) :- in_list(X, Rest).
Given this definition, in list(elt, list) will be true, just in case
elt is a member of list .

KR∧R — Prolog 〈 Contents 〉 KRR-10-10

Recursion Over Lists

The following example is of utmost significance in illustrating
the nature of Prolog. It combines, pattern matching, lists and
recursive definition. Learn this:

in_list(X, [X | _]).

in_list(X, [_ | Rest]) :- in_list(X, Rest).
Given this definition, in list(elt, list) will be true, just in case
elt is a member of list .

(In fact this same functionality is already provided by the inbuilt
member predicate.)

KR∧R — Prolog 〈 Contents 〉 KRR-10-10

Check if Arrays Share a Value in C
#include <stdio.h>

int main() {

int arrayA [4] = {1,2,3,4};

int arrayB [3] = {3,6,9};

if (arrays_share_value(arrayA, 4, arrayB, 3))

printf("YES\n");

else printf("NO\n");

}

int arrays_share_value(int A1[], int len1, int A2[], int len2) {

int i, j;

for (i = 0; i < len1; i++) {

for (j = 0; j < len2; j++) {

if (A1[i] == A2[j]) return 1;

}

}

return 0;

}

KR∧R — Prolog 〈 Contents 〉 KRR-10-11

Check if Lists Share an Element
in Prolog

lists_share_element(L1, L2) :-

member(X, L1),

member(X, L2).

?- lists_share_element([1,2,3,4], [3,6,9]).

yes

KR∧R — Prolog 〈 Contents 〉 KRR-10-12

More Useful Prolog Operators
and Built-Ins

We shall now briefly look at some other useful Prolog constructs
using the following operators and built-in predicates:

• math evaluation: is

• negation: \+

• disjunction: ;

• setof

• cut: !

KR∧R — Prolog 〈 Contents 〉 KRR-10-13

Math Evaluation with ‘is’

Though possible, it would be rather tedious and very inefficient to
code basic mathematical operations in term of Prolog facts and
rules (e.g. add(1,1,2)., add(1,2,3). etc).

However, the ‘is’ enables one to evaluate a math expression and
bind the value obtained to a variable.

For example after executing the code line

X is sqrt(57 + log(10))

Prolog will bind X to the appropriate decimal number:

X = 7.700817170469251

KR∧R — Prolog 〈 Contents 〉 KRR-10-14

The Negation Operator, ‘\+’

It is often useful to check that a particular goal expression does
not succeed.

This is done with the ‘\+’ operator.

E.g.

\+loves(john, mary)

\+loves(john, X)

By using brackets one can check wether two or more predicates
cannot be simultaneously satisfied:

\+(member(Z, L1), member(Z, L2))

KR∧R — Prolog 〈 Contents 〉 KRR-10-15

Forming Disjunctions with ‘;’

Sometimes we may want to test whether either of two goals is
satisfied. We can do this with an expression such as:

(handsome(X) ; rich(X))

This will be true if there is a value of X, such that either the
handsome or the rich predicate is true for this value.

KR∧R — Prolog 〈 Contents 〉 KRR-10-16

Forming Disjunctions with ‘;’

Sometimes we may want to test whether either of two goals is
satisfied. We can do this with an expression such as:

(handsome(X) ; rich(X))

This will be true if there is a value of X, such that either the
handsome or the rich predicate is true for this value.

Thus, we could define:

attractive(X) :- (handsome(X) ; rich(X)).

KR∧R — Prolog 〈 Contents 〉 KRR-10-16

Forming Disjunctions with ‘;’

Sometimes we may want to test whether either of two goals is
satisfied. We can do this with an expression such as:

(handsome(X) ; rich(X))

This will be true if there is a value of X, such that either the
handsome or the rich predicate is true for this value.

Thus, we could define:

attractive(X) :- (handsome(X) ; rich(X)).

This is actually equivalent to the pair of rules:

attractive(X) :- handsome(X).

attractive(X) :- rich(X).

KR∧R — Prolog 〈 Contents 〉 KRR-10-16

Combining Operators

In general, we can combine several operators to form a complex
goal which is a (truth functional) combination of several simpler
goals.

E.g.:

eligible(X) :- handsome(X),

(single(X) ; rich(X)),

\+ cheesy_grin(X).

KR∧R — Prolog 〈 Contents 〉 KRR-10-17

The setof Predicate

It is often very useful to be able to find the set of all possible values
that satisfy a given predicate.

This can be done with the special built-in setof predicate, which
is used in the following way:

setof(X, some predicate(X), L)

This is true if L is a list whose members are all those values of X,
which satisfy the predicate some predicate(X).

E.g.:

eligible_shortlist(L) :-

setof(X, eligible(X), L).

KR∧R — Prolog 〈 Contents 〉 KRR-10-18

The Cut Operator, ‘!’
The so-called cut operator is used to control the flow of execution,
by preventing Prolog backtrack past the cut to look for alternative
solutions.
Consider the following mini-program:

red(a). black(b).

color(P,red) :- red(P), !.

color(P,black) :- black(P), !.

color(P,unknown).

Consider what happens if we give the following queries:

?- color(a, Col).

?- color(c, Col).

What would be the difference if the cuts were removed?

KR∧R — Prolog 〈 Contents 〉 KRR-10-19

Data Record Processing Example

Here is a typical example of how some data might be stored in the
form of Prolog facts:

%%% ID Surname First Name User Name Degree

student(101, ’SMITH’, ’John’, comp2010js, ’Computing’).

student(102, ’SMITH’, ’Sarah’, comp2010ss, ’Computing’).

student(103, ’JONES’, ’Jack’, comp2010jj, ’Computing’).

student(104, ’DE-MORGAN’ ’Augustus’, log2010adm, ’Logic’).

student(105, ’RAMCHUNDRA’, ’Lal’, log2010lr, ’Logic’).

coursework(1, comp2010js, 45).

coursework(1, comp2010ss, 66).

coursework(1, comp2010jj, 35).

coursework(1, log2010adm, 99).

coursework(1, log2010lr, 87).

KR∧R — Prolog 〈 Contents 〉 KRR-10-20

Deriving Further Info
from the Data

Given the data format used on the previous slide, the following
code concisely defines how to derive the top mark for a given
coursework:

top_mark(CW, [First, Sur]) :-

coursework(CW, User, Mark1),

\+((coursework(CW, _, Mark2),

Mark2 > Mark1

)

),

student(_, Sur, First, User, _).

Note: the extra layer of bracketing in \+((...)) is required in
order to compound two predicates to form a single argument for
the \+ operator.

KR∧R — Prolog 〈 Contents 〉 KRR-10-21

More Data Extraction Rules

Here are some further useful rules for extracting information from
the student and coursework data:

student_user(U) :- student(_, _, _, U, _).

user_pass_cw(U, CW) :-

coursework(CW, U, Mark),

Mark >= 40.

user_name(U, [S,F]) :- student(_, S, F, U, _).

KR∧R — Prolog 〈 Contents 〉 KRR-10-22

Example Use of setof

The setof operator enables us to straightforwardly derive the
whole set of elements satisfying a given condition:

pass_list(CW, PassList) :-

setof(Name, U^(user_pass_cw(U,CW),

user_name(U,Name)), PassList

).

Note: the construct U^(...) is a special operator that is used
within setof commands to tell prolog that the value of variable U

can be different for each member of the set.

KR∧R — Prolog 〈 Contents 〉 KRR-10-23

Conclusion

The nature of Prolog programming is very different from other
languages.

In order to program efficiently you need to understand typical
Prolog code examples and build your programs using similar style.

Trying to put imperative ideas into a decarative form can lead to
overly complex and error prone code.

Although Prolog code is very much declarative in nature, in order
for programs to work correctly and efficiently one must also be
aware of how code ordering affects the execution sequence.

KR∧R — Prolog 〈 Contents 〉 KRR-10-24

Knowledge Representation

Lecture KRR-11

Spatial Reasoning

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-1

Importance of Spatial Information

Spatial Information is crucial to many important types of software
systems. For example:

• Geographical Information Systems (GIS)

• Robotic Control

• Medical Imaging

• Virtual Worlds and Video Games

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-2

Quantitative Approaches

Most existing computer programs that handle spatial information
employ a quantitative representation, based on numerical
coordinates.

A polygon is represented by a list of the coordinates of its vertices.

For example, a triangle in 2D space is represented by six numbers
— two for each of its three corners.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-3

Qualitative Representations

An approach to spatial reasoning, which is becoming increasingly
popular in AI (and has been studied for some time at Leeds) is to
use qualitative representations.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-4

Qualitative Representations

An approach to spatial reasoning, which is becoming increasingly
popular in AI (and has been studied for some time at Leeds) is to
use qualitative representations.

Qualitative representation use high level concepts to describe
spatial properties and configurations.

E.g. P(x, y) can mean that region x is a part of region y.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-4

Qualitative Representations

An approach to spatial reasoning, which is becoming increasingly
popular in AI (and has been studied for some time at Leeds) is to
use qualitative representations.

Qualitative representation use high level concepts to describe
spatial properties and configurations.

E.g. P(x, y) can mean that region x is a part of region y.

Qualitative spatial theories may be formulated in a standard
logical language, such as 1st-order logic.

However the use of special purpose reasoning methods, such as
compositional reasoning is often better than using general 1st-
order reasoning methods.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-4

Logical Primitives for Geometry

The (Euclidean) geometry of points can be axiomatised in terms
of the single primitive of equidistance which holds between two
pairs of points.

EQD(x, y, z, w) holds just in case dist(x, y) = dist(z, w).

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-5

Logical Primitives for Geometry

The (Euclidean) geometry of points can be axiomatised in terms
of the single primitive of equidistance which holds between two
pairs of points.

EQD(x, y, z, w) holds just in case dist(x, y) = dist(z, w).

Equidistance satisfies the following axioms:

∀xy[EQD(x, y, y, x)] reflexivity

∀xyz[EQD(x, y, z, z)→ (x = y) identity

∀xyzuvw[(EQD(x, y, z, u) ∧ EQD(x, y, v, w)) transitivity

→ EQD(z, u, v, w)]

(A complete axiomatisation requires quite a few more axioms.)

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-5

Points Lines and Regions

In Euclidean geometry (and quantitative representations based
upon it) the point is taken as a primitive entity.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-6

Points Lines and Regions

In Euclidean geometry (and quantitative representations based
upon it) the point is taken as a primitive entity.

A line can be defined by a pair of points.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-6

Points Lines and Regions

In Euclidean geometry (and quantitative representations based
upon it) the point is taken as a primitive entity.

A line can be defined by a pair of points.

A two or three dimensional region is represented by a set of
points.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-6

Points Lines and Regions

In Euclidean geometry (and quantitative representations based
upon it) the point is taken as a primitive entity.

A line can be defined by a pair of points.

A two or three dimensional region is represented by a set of
points.

Since sets are computationally unmanageable, one can normally
only deal with regions corresponding to a restricted classes of
point sets. E.g. polygons, polyhedra, spheres, cylinders, etc.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-6

Points Lines and Regions

In Euclidean geometry (and quantitative representations based
upon it) the point is taken as a primitive entity.

A line can be defined by a pair of points.

A two or three dimensional region is represented by a set of
points.

Since sets are computationally unmanageable, one can normally
only deal with regions corresponding to a restricted classes of
point sets. E.g. polygons, polyhedra, spheres, cylinders, etc.

An irregular region, such as a country, must be represented as a
polygon.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-6

Region-Based Representations

A number of qualitative representations have been proposed in
which spatial regions are taken as primitive entities.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-7

Region-Based Representations

A number of qualitative representations have been proposed in
which spatial regions are taken as primitive entities.

This has several advantages:

• Simple qualitative relations between regions do not need to be
analysed as complex relations between their points.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-7

Region-Based Representations

A number of qualitative representations have been proposed in
which spatial regions are taken as primitive entities.

This has several advantages:

• Simple qualitative relations between regions do not need to be
analysed as complex relations between their points.

• Natural language expressions often correspond to properties
and relations involving regions (rather than points or sets of
points).

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-7

Region-Based Representations

A number of qualitative representations have been proposed in
which spatial regions are taken as primitive entities.

This has several advantages:

• Simple qualitative relations between regions do not need to be
analysed as complex relations between their points.

• Natural language expressions often correspond to properties
and relations involving regions (rather than points or sets of
points).

A disadvantage is that logical reasoning using these concepts is
often much more complex than numerical computations on point
coordinates.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-7

The RCC-8 Relations

The following set of binary topological relations, known as RCC-8,
has been found to be particularly significant.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-8

Example Topological Description

PO(c1, s) ∧ DC(c1, t) ∧ DC(c1, c2) ∧

TPP(c2, s) ∧ EC(c2, t) ∧ NTPP(t, s)

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-9

Connection as a Topological
Primitive

A very wide range of topological concepts can be defined in terms
of the single primitive relation C(x, y), which means that region x
is connected to region y.

This means that x and y either share some common part (they
overlap) or they may be only externally connected (the touch).

Connection is refexive and symmetric — i.e. it satisfies the
following axioms:

∀x[C(x, x)]

∀x∀y[C(x, y)→ C(y, x)]

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-10

Defining other Relations from
Connection

Many other properties and relations can be defined from
connection. For example:

DC(x, y) ≡ def ¬C(x, y) DisConnection

P(x, y) ≡ def ∀z[C(z, x)→ C(z, y)] Parthood

O(x, y) ≡ def ∃z[P(z, x) ∧ P(z, y)] Overlap

DR(x, y) ≡ def ¬O(x, y) DiscReteness

EC(x, y) ≡ def C(x, y) ∧ DR(x, y) External Connection

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-11

Defining the Sum of two Regions

One can define a function which gives the sum of two regions:

∀x∀y∀z[x = sum(y, z)↔ ∀w[C(w, x)↔ (C(w, y) ∨ C(w, z)]

c = sum(r, b)

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-12

Intersections

If two regions overlap then there will be a region which is in the
intersection of the two. This can be stated by the following axiom:

∀x∀y[O(x, y)↔ ∃z[INT(x, y, z)]]

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-13

Intersections

If two regions overlap then there will be a region which is in the
intersection of the two. This can be stated by the following axiom:

∀x∀y[O(x, y)↔ ∃z[INT(x, y, z)]]

So, the following figure satisfies INT(r, b,m).

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-13

Intersections

If two regions overlap then there will be a region which is in the
intersection of the two. This can be stated by the following axiom:

∀x∀y[O(x, y)↔ ∃z[INT(x, y, z)]]

So, the following figure satisfies INT(r, b,m).

The meaning of the INT predicate can be defined by the following
equivalence:

INT(x, y, z)↔ ∀w[(P(w, x) ∧ P(w, y))↔ P(w, z)]

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-13

Self-Connectedness

A region that consists of a single connected piece may be
called ‘one-piece’, ‘self-connected’ or just ‘connected’ (not to be
confused with the binary connection relation).

In terms of sum and binary connection we can define:

SCON(x) ≡ ∀y∀z[(x = sum(y, z))→ C(y, z)]

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-14

Self-Connectedness

A region that consists of a single connected piece may be
called ‘one-piece’, ‘self-connected’ or just ‘connected’ (not to be
confused with the binary connection relation).

In terms of sum and binary connection we can define:

SCON(x) ≡ ∀y∀z[(x = sum(y, z))→ C(y, z)]

Here we have
SCON(y) ∧ ¬SCON(m) ∧
SCON(sum(y,m)).

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-14

Convexity

By adding a primitive notion of convexity (e.g. using a convex hull
function), we can define many properties relating to shape and
also various containment relations.

Here we have: NTPP(a, conv(ccvia), PO(b, conv(ccvia)) etc..

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-15

Convexity and Convex Hulls

A region is convex just in case it is equal to its own convex hull.
Thus, we could define:

CONV(x)↔ (conv(x) = x)

Conversely, the convex hull function can be defined by:

(y = conv(x))↔ (CONV(y) ∧ P(x, y) ∧
∀z[(CONV(z) ∧ P(x, z))→ P(y, z)])

So, the function conv and the predicate CONV are interdefinable.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-16

Congruence

Another very expressive spatial relation which we may wish to
employ is that of congruence.

Two regions are congruent, if one can be transformed into the
other by a combination of a rotation and a linear displacement
and possibly also a mirror image transposition.

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-17

Exercise

Try drawing situations corresponding to the following formulae:

• DC(a, b) ∧ DC(a, c) ∧ P(a, conv(sum(b, c))

• EC(a, conv(b)) ∧ DC(a, b)

• INT(a, b, c) ∧ SCON(a) ∧ SCON(b) ∧ ¬SCON(c)

• PO(a, b) ∧ PO(a, c) ∧ ∀x[C(x, a)→ C(x, sum(b, c))]

• ∃x∃y∃z[P(x, a) ∧ ¬P(x, b) ∧ P(y, a) ∧ P(y, b) ∧ P(z, b) ∧ ¬P(z, a)]

• EC(a, b) ∧ (conv(a) = conv(b))

KR∧R — Spatial Reasoning 〈 Contents 〉 KRR-11-18

Knowledge Representation

Lecture KRR-12

Modes of Inference

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-1

Deduction

The form of inference we have studied so-far in this course is
known as deduction.

An argument is deductively valid iff: given the truth of its
premisses, its conclusion is necessarily true.

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-2

Induction

A mode of inference which is very common in empirical sciences
is induction.

In this form of inference we start with a (usually large) body
of specific facts (observations) and generalise from this to a
universal law.

E.g. from observing many cases we might induce:
All physical bodies not subject to an external force

eventually come to a state of rest.

Although supported by many facts and not contradicted by a
counterexample, an inductive inference is not deductively valid.

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-3

Abduction
Abduction is the kind of reasoning where we infer from some
observed fact an explanation of that fact.

Specifically, given an explanatory theory Θ and an observed fact
φ, we may abduce α if:

Θ, α |= φ

For abduction to be reasonable we need some way of constraining
α to be a good explanation of φ.

We generally want to abduce a simple fact, not a general principle
(that would be induction).

In formal logic this may be difficult; but in ordinary commonsense
reasoning abduction seems to be extremely common.

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-4

Illustration of the Different Modes

1. All beans in the bag are red.
2. These beans came from the bag.
3. These beans are all red.

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-5

Illustration of the Different Modes

1. All beans in the bag are red.
2. These beans came from the bag.
3. These beans are all red.

What are the following modes of reasoning?:

• 1, 2 |≈ 3

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-5

Illustration of the Different Modes

1. All beans in the bag are red.
2. These beans came from the bag.
3. These beans are all red.

What are the following modes of reasoning?:

• 1, 2 |≈ 3

deduction
• 1, 3 |≈ 2

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-5

Illustration of the Different Modes

1. All beans in the bag are red.
2. These beans came from the bag.
3. These beans are all red.

What are the following modes of reasoning?:

• 1, 2 |≈ 3

deduction
• 1, 3 |≈ 2

abduction
• 2, 3 |≈ 1

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-5

Illustration of the Different Modes

1. All beans in the bag are red.
2. These beans came from the bag.
3. These beans are all red.

What are the following modes of reasoning?:

• 1, 2 |≈ 3

deduction
• 1, 3 |≈ 2

abduction
• 2, 3 |≈ 1

induction

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-5

Other Modes

Are there any other modes of reasoning?

KR∧R — Modes of Inference 〈 Contents 〉 KRR-12-6

Knowledge Representation

Lecture KRR-13

Multi-Valued and Fuzzy Logics

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-1

Overview

• This lecture gives a brief overview of multi-valued and fuzzy
logics.

• These logics depart from classical logic in that they allow
that propositions may have truth values that are intermediate
between absolute truth and absolute falsity.

• We shall see that giving a semantics for multi-valued logics
requires that the standard Boolean truth function interpretation
of logical operators be replaced by more complex truth
functions.

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-2

Classical Truth Values

In classical logic, it is assumed that every proposition is either true
or false (and not both).

Thus we take as the principles of excluded middle and non-
contradiction as fundamental theorems or axioms:

(φ ∨ ¬φ) ¬(φ ∧ ¬φ)

We say that classical logic gives a bi-valent account of truth.

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-3

Degrees of Truth

One of the central ideas of multi-valued and fuzzy logics (which
may be considered a type of multi-valued logic) is that certain
propositions may be neither absolutely true nor absolutely false,
but instead may have some intermediate truth value, which lies
somewhere in between.

Such propositions typically involve vague adjectives. For instance:

• Sue is tall.

• Alfred is Bald.

• That bag is heavy.

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-4

3-Valued Logic

3-valued logic, allows each proposition to have one of three
possible truth values.

As well as the usual true (T) and false (F) there is a third truth
value, which I will write as: U.

The truth value U may be described as: ‘unknown’, ‘uncertain’ or
‘indeterminate’; or perhaps ‘partly true’.

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-5

3-Valued Truth Tables

Several different 3-Valued logics have been proposed, most
notably those of Łukasiewicz and Kleene.

Both of these logics agree on the basic truth-tables for negation,
conjunction and disjunction:

α ¬α

T F

U U

F T

(A ∧ B)
B

T U F

A

T T U F

U U U F

F F F F

(A ∨ B)
B

T U F

A

T T T T

U T U U

F T U F

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-6

3-Valued Implication Functions

Interpretation of the implication connective is more controversial.

Keene and Łukasiewicz logic give different truth tables for ‘→ ’:

Kleene Łukasiewicz

(A→ B)
B

T U F

A

T T U F

U T U U

F T T T

(A→ B)
B

T U F

A

T T U F

U T T U

F T T T

They differ on the value of (A→ B), where both A and B have
the truth value U.

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-7

Fuzzy Logic
and Fuzzy Truth Values

In the most common form of Fuzzy Logic the truth value of every
proposition is a number in the range [0...1], where:

• 1 is definitely true

• 0 is definitely false.

• 0.5 is in the middle between true and false.

• Values in (0.5...1) means that the proposition is more true than
false (though not completely true).

• Values in (0...0.5) mean the proposition is more false than true.

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-8

Characteristic Functions
for Fuzzy Sets

Fuzzy truth values are often associated with the degree of
membership of an entity in a fuzzy set. This is often modelled
by a function of some relevant measurable property.
For instance, degree of membership of a person in the set of ‘tall
people’ can be modelled as a function of the height of a person:

1.0

0.5

7ft6ft5ft

Degree

of

Truth

Height

Characteristic Function for ’Tall’

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-9

Fuzzy Truth Functions

The truth values of propositions formed by truth functional
connectives in fuzzy logic are standardly modelled by the following
numerical operations:

V(¬A) = 1− V(A)

V(A ∧ B) = Min(V(A),V(B))

V(A ∨ B) = Max(V(A),V(B))

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-10

Examples

• Tall(Alan) = 0.7

• Thin(Alan) = 0.4

So

¬Tall(Alan) = 1− 0.4 = 0.4

Tall(Allan) ∧ Thin(Alan)) = Min(0.7, 0.4) = 0.4

¬(Tall(Alan) ∨ Thin(Alan))) = 1−Max(0.7, 0.4) = 0.3

Tall(Alan) ∧ ¬Thin(Alan)) = Min(0.7, (1− 0.4)) = 0.6

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-11

Very and Quite

We can also model other modifications of a proposition as fuzzy
truth functions:

• V(Very(φ)) = (V(φ))2

• V(Quite(φ)) = (V(φ))1/2

So:

Very(Tall(Alan)) = 0.72 = 0.49

Quite(Thin(Alan)) = (0.4)1/2 = 0.632

KR∧R — Multi-Valued and Fuzzy Logics 〈 Contents 〉 KRR-13-12

Knowledge Representation

Lecture KRR-14

Non-Monotonic Reasoning

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-1

Monotonic vs Non-Monotonic Logic

Classical logic is monotonic. This means that increasing the
amount of information (i.e. the number of premisses) always adds
to what can be deduced. Formally we have:

Γ ` φ =⇒ Γ ∧ ψ ` φ

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-2

Monotonic vs Non-Monotonic Logic

Classical logic is monotonic. This means that increasing the
amount of information (i.e. the number of premisses) always adds
to what can be deduced. Formally we have:

Γ ` φ =⇒ Γ ∧ ψ ` φ

And indeed, in the semantics for classical logics we have:

Γ |= φ =⇒ Γ ∧ ψ |= φ

Conversely a proof system is non-monotonic iff:

Γ ` φ 6=⇒ Γ ∧ ψ ` φ

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-2

So, adding information can make a deduction become invalid.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-3

Motivation for Non-Monotonicity

• In commonsense reasoning we often draw conclusions that are
not completely certain. We may then retract these if we get
more information.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-4

Motivation for Non-Monotonicity

• In commonsense reasoning we often draw conclusions that are
not completely certain. We may then retract these if we get
more information.

• When we communicate we tend to leave out obvious
assumptions.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-4

Motivation for Non-Monotonicity

• In commonsense reasoning we often draw conclusions that are
not completely certain. We may then retract these if we get
more information.

• When we communicate we tend to leave out obvious
assumptions.

• In the absence of further detail we tend to associate generic
descriptions with some prototype (e.g. bird⇒ robin).

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-4

The ‘Tweety’ Example

This example has been discussed endlessly in the non-monotonic
reasoning literature.

Given the fact Bird(Tweety) we would (in most cases) like to infer
Flies(Tweety).

We could have an axiom ∀x[Bird(x)→ Flies(x)]

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-5

The ‘Tweety’ Example

This example has been discussed endlessly in the non-monotonic
reasoning literature.

Given the fact Bird(Tweety) we would (in most cases) like to infer
Flies(Tweety).

We could have an axiom ∀x[Bird(x)→ Flies(x)]

But what if Tweety is a penguin?

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-5

The ‘Tweety’ Example

This example has been discussed endlessly in the non-monotonic
reasoning literature.

Given the fact Bird(Tweety) we would (in most cases) like to infer
Flies(Tweety).

We could have an axiom ∀x[Bird(x)→ Flies(x)]

But what if Tweety is a penguin?

We could tighten the axiom to
∀x[(Bird(x) ∧ ¬Penguin(x))→ Flies(x)]

But then if all we know is ‘Bird(Tweety)’ we cannot make the
inference we wanted.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-5

The Closed World Assumption

A simple form of non-monotonic reasoning is to assume that
everything that is not provable is false.

So we have an additional inference rule of the form:

Γ 6` φ =⇒ Γ ` ¬φ

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-6

The Closed World Assumption

A simple form of non-monotonic reasoning is to assume that
everything that is not provable is false.

So we have an additional inference rule of the form:

Γ 6` φ =⇒ Γ ` ¬φ

But this can lead to inconsistency. We generally need the
restriction that φ must occur in Γ. But we still have problems.

Let Γ = (p ∨ q) then neither p or q follow from Γ so from the CWA
we can derive ¬p and ¬q. But the formula(p ∨ q) ∧ ¬p ∧ ¬q is
inconsistent.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-6

Default Logic

Proposed by Ray Reiter in 1980.

This logic is built on propositional or 1st-order logic by adding an
extra inference mechanism.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-7

Default Logic

Proposed by Ray Reiter in 1980.

This logic is built on propositional or 1st-order logic by adding an
extra inference mechanism.

Default Rules are used to specify typical (default) inferences —
e.g. Birds typically fly.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-7

Default Logic

Proposed by Ray Reiter in 1980.

This logic is built on propositional or 1st-order logic by adding an
extra inference mechanism.

Default Rules are used to specify typical (default) inferences —
e.g. Birds typically fly.

We can only make inferences from default rules provided it is
consistent to do so.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-7

Default Logic

Proposed by Ray Reiter in 1980.

This logic is built on propositional or 1st-order logic by adding an
extra inference mechanism.

Default Rules are used to specify typical (default) inferences —
e.g. Birds typically fly.

We can only make inferences from default rules provided it is
consistent to do so.

For example, if Tweety is a bird the by default we can conclude
that he flies. If, however, we know that Tweety is a penguin (or
ostrich etc.) the this inference is blocked.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-7

Default Rules

The general form of a default rule is

α : β1, . . . , βn / γ

(The γ is often written underneath.)

This means: “If α is true and it is consistent to believe each of
the βi (not necessarily at the same time), then one may infer (by
default) γ.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-8

Default Rules

The general form of a default rule is

α : β1, . . . , βn / γ

(The γ is often written underneath.)

This means: “If α is true and it is consistent to believe each of
the βi (not necessarily at the same time), then one may infer (by
default) γ.

α is the prerequisite — it may sometimes be omitted.

The βis are called ‘justifications’; and γ is the conclusion.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-8

Normal Defaults

A normal default is one where the ‘justification’ is the same as the
conclusion:

E.g. German(x) : Drinks-Beer(x)/Drinks-Beer(x)

Thus given German(max)

we can use this default rule to infer Drinks-Beer(max)

unless we can prove ¬Drinks-Beer(max).

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-9

Normal Defaults

A normal default is one where the ‘justification’ is the same as the
conclusion:

E.g. German(x) : Drinks-Beer(x)/Drinks-Beer(x)

Thus given German(max)

we can use this default rule to infer Drinks-Beer(max)

unless we can prove ¬Drinks-Beer(max).

Normal defaults have nice computational properties.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-9

Non-Normal Defaults

The most obvious default rules are the normal ones, where we
derive a conclusion as long as that conclusion is consistent.

However, sometimes it is useful to use a justification that is
different from the conclusion.

E.g. Adult(x) : (Married(x) ∧ ¬Student(x)) / Married(x)

The extra ¬Student(x) conjunct in the justification serves to block
the inference when we know that x is a student.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-10

Rules with no Prerequisite

By using rules with no prerequisite we can allow normal
assumptions to be made where no information is given.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-11

Rules with no Prerequisite

By using rules with no prerequisite we can allow normal
assumptions to be made where no information is given.

For instance if a scenario description does not mention it is raining
we can assume it is not.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-11

Rules with no Prerequisite

By using rules with no prerequisite we can allow normal
assumptions to be made where no information is given.

For instance if a scenario description does not mention it is raining
we can assume it is not.

A default Sit Calc theory might contain the rule:

: ¬Holds(Raining, s) / ¬Holds(Raining, s)

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-11

Rules with no Prerequisite

By using rules with no prerequisite we can allow normal
assumptions to be made where no information is given.

For instance if a scenario description does not mention it is raining
we can assume it is not.

A default Sit Calc theory might contain the rule:

: ¬Holds(Raining, s) / ¬Holds(Raining, s)

This would allow the following action precondition to be satisfied
in the absence of information about rain:

poss(play-football, s) ← ¬Holds(Raining, s)

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-11

Default Theories

A default theory is a classical theory plus a set of default rules.
Thus it can be described by pair:

〈T ,D〉 ,

where T is a set of classical formulae and D a set of default rules.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-12

Provability in a Default Theory

Default logics are built on top of classical logics so the notion of
classical deduction can be retained in the default logic setting:

• Let T ` φ mean that φ is derivable from T by classical
(monotonic) inference.

A (naı̈ve) non-monotonic deduction relation can be represented
as follows:

Let T `D φ mean that φ is derivable from T by a combination of
classical inference and the application of default rules taken from
D.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-13

Self-Undermining Inferences

Consider the simple default theory 〈T ,D〉, where:
T = {R, P → Q}
D = {(R : ¬Q / P)}

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-14

Self-Undermining Inferences

Consider the simple default theory 〈T ,D〉, where:
T = {R, P → Q}
D = {(R : ¬Q / P)}

Since ¬Q is consistent with T , we can apply the default rule and
derive P . Then by modus ponens we immediately get Q.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-14

Self-Undermining Inferences

Consider the simple default theory 〈T ,D〉, where:
T = {R, P → Q}
D = {(R : ¬Q / P)}

Since ¬Q is consistent with T , we can apply the default rule and
derive P . Then by modus ponens we immediately get Q.

But T ∪ {P} now entails Q and is thus inconsistent with the
justification ¬Q used in the default rule.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-14

Self-Undermining Inferences

Consider the simple default theory 〈T ,D〉, where:
T = {R, P → Q}
D = {(R : ¬Q / P)}

Since ¬Q is consistent with T , we can apply the default rule and
derive P . Then by modus ponens we immediately get Q.

But T ∪ {P} now entails Q and is thus inconsistent with the
justification ¬Q used in the default rule.

So the applicability of the default rule is now brought into question.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-14

Well-Founded Default Provability

To get a better-behaved entailment relation we want to block
inferences that undercut the default rules used in their own
derivation.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-15

Well-Founded Default Provability

To get a better-behaved entailment relation we want to block
inferences that undercut the default rules used in their own
derivation.

I first define a restricted entailment relation where derivations from
T can only use defaults that are also compatible with an additional
formula set S

Let T `(D : S) φmean that φ is derivable from T by a combination
of classical inference and the application of default rules taken
from D and whose justifications are consistent with T ∪ S.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-15

Extensions of Default Theories

We now characterise sets of self-consistent inferences from a
default theory.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-16

Extensions of Default Theories

We now characterise sets of self-consistent inferences from a
default theory.

An extension of 〈T ,D〉 is a set of formulae E such that:

1. T ⊆ E

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-16

Extensions of Default Theories

We now characterise sets of self-consistent inferences from a
default theory.

An extension of 〈T ,D〉 is a set of formulae E such that:

1. T ⊆ E

2. If E ` φ then φ ∈ E (deductive closure);

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-16

Extensions of Default Theories

We now characterise sets of self-consistent inferences from a
default theory.

An extension of 〈T ,D〉 is a set of formulae E such that:

1. T ⊆ E

2. If E ` φ then φ ∈ E (deductive closure);

3. If α ∈ E and (α : β1, . . . , βn / γ) ∈ D and for i ∈ {1, . . . , n},
¬βi 6∈ E then γ ∈ E (default closure);

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-16

Extensions of Default Theories

We now characterise sets of self-consistent inferences from a
default theory.

An extension of 〈T ,D〉 is a set of formulae E such that:

1. T ⊆ E

2. If E ` φ then φ ∈ E (deductive closure);

3. If α ∈ E and (α : β1, . . . , βn / γ) ∈ D and for i ∈ {1, . . . , n},
¬βi 6∈ E then γ ∈ E (default closure);

4. For each φ ∈ E we have T `(D : E) φ (grounded and well-
founded — no undermining).

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-16

Conflicting Extensions

Suppose a default theory contains the default rules:
1) (: ¬Raining / ¬Raining)

and
2) (Wet-Washing : Raining / Raining);

and also the fact Wet-Washing.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-17

Conflicting Extensions

Suppose a default theory contains the default rules:
1) (: ¬Raining / ¬Raining)

and
2) (Wet-Washing : Raining / Raining);

and also the fact Wet-Washing.

We can apply either of the rules. But, once we have applied one,
the justification of the other will be undermined.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-17

Conflicting Extensions

Suppose a default theory contains the default rules:
1) (: ¬Raining / ¬Raining)

and
2) (Wet-Washing : Raining / Raining);

and also the fact Wet-Washing.

We can apply either of the rules. But, once we have applied one,
the justification of the other will be undermined.

Thus there are two distinct extensions to the theory.
One containing ¬Raining and the other containing Raining.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-17

Conflicting Extensions

Suppose a default theory contains the default rules:
1) (: ¬Raining / ¬Raining)

and
2) (Wet-Washing : Raining / Raining);

and also the fact Wet-Washing.

We can apply either of the rules. But, once we have applied one,
the justification of the other will be undermined.

Thus there are two distinct extensions to the theory.
One containing ¬Raining and the other containing Raining.

Is this desirable?

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-17

Conflicting Extensions

Suppose a default theory contains the default rules:
1) (: ¬Raining / ¬Raining)

and
2) (Wet-Washing : Raining / Raining);

and also the fact Wet-Washing.

We can apply either of the rules. But, once we have applied one,
the justification of the other will be undermined.

Thus there are two distinct extensions to the theory.
One containing ¬Raining and the other containing Raining.

Is this desirable?

It depends on what we want.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-17

Validity in Default Logic

Reiter suggested that each extension can be taken as a consistent
set of beliefs compatible with a default theory.

In Default Logic the notion of valid inference can be characterised
in various different ways. The most common are the following:

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-18

Validity in Default Logic

Reiter suggested that each extension can be taken as a consistent
set of beliefs compatible with a default theory.

In Default Logic the notion of valid inference can be characterised
in various different ways. The most common are the following:

Credulous entailment is defined by:

〈T ,D〉 |=cred φ

just in case φ is a member of some extension of 〈T ,D〉.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-18

Validity in Default Logic
Reiter suggested that each extension can be taken as a consistent
set of beliefs compatible with a default theory.

In Default Logic the notion of valid inference can be characterised
in various different ways. The most common are the following:

Credulous entailment is defined by:

〈T ,D〉 |=cred φ

just in case φ is a member of some extension of 〈T ,D〉.

Sceptical entailment is defined by:

〈T ,D〉 |=scept φ

just in case φ is a member of every extension of 〈T ,D〉.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-18

Computational Properties
of Default Reasoning

Adding default reasoning to a logic can greatly increase the
complexity of computing inferences.

To apply a rule (α : β / γ) we need to check whether β is
consistent with the rest of the theory.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-19

Computational Properties
of Default Reasoning

Adding default reasoning to a logic can greatly increase the
complexity of computing inferences.

To apply a rule (α : β / γ) we need to check whether β is
consistent with the rest of the theory.

If the logic is decidable default reasoning will still be decidable
(although usually more complex).

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-19

Computational Properties
of Default Reasoning

Adding default reasoning to a logic can greatly increase the
complexity of computing inferences.

To apply a rule (α : β / γ) we need to check whether β is
consistent with the rest of the theory.

If the logic is decidable default reasoning will still be decidable
(although usually more complex).

But if the logic is (as 1st-order logic) only semi-decidable, then
consistency checking is undecidable. So default reasoning will
then be fully undecidable.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-19

Default Solution of
the Frame Problem in Sit Calc

One solution of the frame problem is to assume that nothing
changes unless it is forced to change by some entailment of
the theory. This can be expressed in a combination of Situation
Calculus and Default Logic as follows:

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-20

Default Solution of
the Frame Problem in Sit Calc

One solution of the frame problem is to assume that nothing
changes unless it is forced to change by some entailment of
the theory. This can be expressed in a combination of Situation
Calculus and Default Logic as follows:

holds(φ, s) : holds(φ, result(α, s)) / holds(φ, result(α, s))

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-20

Default Solution of
the Frame Problem in Sit Calc

One solution of the frame problem is to assume that nothing
changes unless it is forced to change by some entailment of
the theory. This can be expressed in a combination of Situation
Calculus and Default Logic as follows:

holds(φ, s) : holds(φ, result(α, s)) / holds(φ, result(α, s))

However, we still need to ensure that the background theory we
are using takes care of sementica and and causal relationships.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-20

Default Solution of
the Frame Problem in Sit Calc

One solution of the frame problem is to assume that nothing
changes unless it is forced to change by some entailment of
the theory. This can be expressed in a combination of Situation
Calculus and Default Logic as follows:

holds(φ, s) : holds(φ, result(α, s)) / holds(φ, result(α, s))

However, we still need to ensure that the background theory we
are using takes care of sementica and and causal relationships.

And, by itself, default logic does not solve the problem of
ramifications.

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-20

Reading

To get a fuller understanding of default logic, I suggest you read
the following paper:

Grigoris Antoniou (1999), A tutorial on default logics,
ACM Computing Surveys, 31(4):337359.

DOI link: http://doi.acm.org/10.1145/344588.344602

You should be able to download this via the UoL library electronic
resources (search for ACM Computing Surveys).

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-21

http://doi.acm.org/10.1145/344588.344602

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-22

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-23

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-24

KR∧R — Non-Monotonic Reasoning 〈 Contents 〉 KRR-14-25

Knowledge Representation

Lecture KRR-15

Description Logic

KR∧R — Description Logic 〈 Contents 〉 KRR-15-1

Motivation

• AI knowledge bases often contain a large number of concept
definitions, which determine the meaning of a concept in terms
of other more primitive concepts.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-2

Motivation

• AI knowledge bases often contain a large number of concept
definitions, which determine the meaning of a concept in terms
of other more primitive concepts.

• First-order logic is well suited to representing these concept
definitions, but is impractical for actually computing inferences.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-2

Motivation

• AI knowledge bases often contain a large number of concept
definitions, which determine the meaning of a concept in terms
of other more primitive concepts.

• First-order logic is well suited to representing these concept
definitions, but is impractical for actually computing inferences.

• We would like a representational formalism which retains
enough of the expressive power of 1st-order logic to facilitate
concept definitions but has better computational properties.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-2

Relationships Between Concepts

Many types of logical reasoning depend on semantic relationships
between concepts.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-3

Relationships Between Concepts

Many types of logical reasoning depend on semantic relationships
between concepts.

For instance, the necessary fact that “All dogs are mammals”
could be represented in 1st-order logic as follows:

∀x[Dog(x)→ Mammal(x)]

KR∧R — Description Logic 〈 Contents 〉 KRR-15-3

Relationships Between Concepts

Many types of logical reasoning depend on semantic relationships
between concepts.

For instance, the necessary fact that “All dogs are mammals”
could be represented in 1st-order logic as follows:

∀x[Dog(x)→ Mammal(x)]

Another way of looking at the meaning of this formula is to regard
it as saying that ‘Dog’ is a subconcept of ‘Mammal’.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-3

Relationships Between Concepts

Many types of logical reasoning depend on semantic relationships
between concepts.

For instance, the necessary fact that “All dogs are mammals”
could be represented in 1st-order logic as follows:

∀x[Dog(x)→ Mammal(x)]

Another way of looking at the meaning of this formula is to regard
it as saying that ‘Dog’ is a subconcept of ‘Mammal’.

This could be formalised in Description Logic as:

Dog v Mammal

KR∧R — Description Logic 〈 Contents 〉 KRR-15-3

Negation, Conjunction and
Disjunction

It is often useful to describe relations between concepts in terms
of negation, conjunction and disjunction.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-4

Negation, Conjunction and
Disjunction

It is often useful to describe relations between concepts in terms
of negation, conjunction and disjunction.

E.g. in 1st-order logic we might write:

∀x[Bachelor(x)↔ (Male(x) ∧ ¬Married(x))]

KR∧R — Description Logic 〈 Contents 〉 KRR-15-4

Negation, Conjunction and
Disjunction

It is often useful to describe relations between concepts in terms
of negation, conjunction and disjunction.

E.g. in 1st-order logic we might write:

∀x[Bachelor(x)↔ (Male(x) ∧ ¬Married(x))]

In Description Logic we could simply write

Bachelor ≡ (Male u ¬Married)

Similarly we might employ a concept disjunction as follows:

Organism ≡ (Plant t Animal)

KR∧R — Description Logic 〈 Contents 〉 KRR-15-4

Universal and Null Concepts

For some purposes it is useful to refer to the universal concept >,
which is satisfied by everying, or the empty concept ⊥, which is
satisfied by nothing.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-5

Universal and Null Concepts

For some purposes it is useful to refer to the universal concept >,
which is satisfied by everying, or the empty concept ⊥, which is
satisfied by nothing.

For example
(Plant u Animal) ≡⊥

KR∧R — Description Logic 〈 Contents 〉 KRR-15-5

Universal and Null Concepts

For some purposes it is useful to refer to the universal concept >,
which is satisfied by everying, or the empty concept ⊥, which is
satisfied by nothing.

For example
(Plant u Animal) ≡⊥

Or in describing a universe of physical things we might have:

(Mineral t (Plant t Animal)) ≡ >

KR∧R — Description Logic 〈 Contents 〉 KRR-15-5

Instances of Concepts

In 1st-order logic we say that an individual is an instance of a
concept by applying a predicate to the name of the individual. e.g.
Bachelor(fred).

KR∧R — Description Logic 〈 Contents 〉 KRR-15-6

Instances of Concepts

In 1st-order logic we say that an individual is an instance of a
concept by applying a predicate to the name of the individual. e.g.
Bachelor(fred).

In description logic, concepts are just referred to by name and do
not behave syntactically like predicates. Hence we introduce a
special relation, which takes the place of predication. We write,
e.g.:

Fred isa Bachelor

KR∧R — Description Logic 〈 Contents 〉 KRR-15-6

Rôles

We can also use relational concepts, which in DL are usually
called rôles.

For example we can write:

Allen has-child Bob

KR∧R — Description Logic 〈 Contents 〉 KRR-15-7

Quantifiers

DL also allows limited form of quantification using the following
(variable-free) constructs:

KR∧R — Description Logic 〈 Contents 〉 KRR-15-8

Quantifiers

DL also allows limited form of quantification using the following
(variable-free) constructs:

∀r.C
This refers to the concept whose members are all objects, such

that everything they are reletated to by r is a member of C.

e.g.
Comedian ≡ def (Person u ∀ tells-joke.Funny)

KR∧R — Description Logic 〈 Contents 〉 KRR-15-8

More Quantifiers

Similarly we have an existential quantifier, such that

∃r.C

is the concept whose members are all those individuals that are
related to something that is a C.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-9

More Quantifiers

Similarly we have an existential quantifier, such that

∃r.C

is the concept whose members are all those individuals that are
related to something that is a C.

For example:
Parent ≡ (∃ has-child.>)

KR∧R — Description Logic 〈 Contents 〉 KRR-15-9

More Quantifiers

Similarly we have an existential quantifier, such that

∃r.C

is the concept whose members are all those individuals that are
related to something that is a C.

For example:
Parent ≡ (∃ has-child.>)

Grandfather ≡ Male u (∃ has-child.(∃ has-child.>))

KR∧R — Description Logic 〈 Contents 〉 KRR-15-9

Another Example

We will define the conept of “lucky man” as a man who has a rich
or beautiful wife and all his children are happy.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-10

Another Example

Fanatics never respect each other.

KR∧R — Description Logic 〈 Contents 〉 KRR-15-11

KR∧R — Description Logic 〈 Contents 〉 KRR-15-12

Knowledge Representation

Lecture KRR-16

First-Order Resolution

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-1

1st-order Automated Reasoning

• We have seen that 1st-order reasoning is (in general)
undecidable (or more precisely semi-decidable).

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-2

1st-order Automated Reasoning

• We have seen that 1st-order reasoning is (in general)
undecidable (or more precisely semi-decidable).

• Nevertheless massive effort has been spent on developing
inference procedures for 1st-order logic.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-2

1st-order Automated Reasoning

• We have seen that 1st-order reasoning is (in general)
undecidable (or more precisely semi-decidable).

• Nevertheless massive effort has been spent on developing
inference procedures for 1st-order logic.

• This is because 1st-order logic is a very expressive and flexible
language.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-2

1st-order Automated Reasoning

• We have seen that 1st-order reasoning is (in general)
undecidable (or more precisely semi-decidable).

• Nevertheless massive effort has been spent on developing
inference procedures for 1st-order logic.

• This is because 1st-order logic is a very expressive and flexible
language.

• A 1st-order reasoning system that only works on simple set of
formulae can sometimes be very useful.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-2

Resolution in 1st-order Logic

Consider the following argument:
Dog(Fido), ∀x[Dog(x)→ Mammal(x)] ` Mammal(Fido)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-3

Resolution in 1st-order Logic

Consider the following argument:
Dog(Fido), ∀x[Dog(x)→ Mammal(x)] ` Mammal(Fido)

Writing the implication as a quantified clause we have:
Dog(Fido), ∀x[¬Dog(x) ∨ Mammal(x)] ` Mammal(Fido)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-3

Resolution in 1st-order Logic

Consider the following argument:
Dog(Fido), ∀x[Dog(x)→ Mammal(x)] ` Mammal(Fido)

Writing the implication as a quantified clause we have:
Dog(Fido), ∀x[¬Dog(x) ∨ Mammal(x)] ` Mammal(Fido)

If we instantiate x with Fido this is a resolution:
Dog(Fido), ¬Dog(Fido) ∨ Mammal(Fido)] ` Mammal(Fido)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-3

Resolution in 1st-order Logic

Consider the following argument:
Dog(Fido), ∀x[Dog(x)→ Mammal(x)] ` Mammal(Fido)

Writing the implication as a quantified clause we have:
Dog(Fido), ∀x[¬Dog(x) ∨ Mammal(x)] ` Mammal(Fido)

If we instantiate x with Fido this is a resolution:
Dog(Fido), ¬Dog(Fido) ∨ Mammal(Fido)] ` Mammal(Fido)

In 1st-order resolution we combine the instantiation and
cancellation steps into a single inference rule.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-3

Resolution without Instantiation
Resolution does not always involve instantiation. In many cases
one can derive a universal consequence.

Consider the argument:
∀x[Dog(x)→ Mammal(x)] ∧ ∀x[Mammal(x)→ Animal(x)] `

∀x[Dog(x)→ Animal(x)]

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-4

Resolution without Instantiation
Resolution does not always involve instantiation. In many cases
one can derive a universal consequence.

Consider the argument:
∀x[Dog(x)→ Mammal(x)] ∧ ∀x[Mammal(x)→ Animal(x)] `

∀x[Dog(x)→ Animal(x)]

Which is equivalent to :
∀x[¬Dog(x) ∨ Mammal(x)] ∧ ∀x[¬Mammal(x) ∨ Animal(x)] `

∀x[¬Dog(x) ∨ Animal(x)]

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-4

Resolution without Instantiation
Resolution does not always involve instantiation. In many cases
one can derive a universal consequence.

Consider the argument:
∀x[Dog(x)→ Mammal(x)] ∧ ∀x[Mammal(x)→ Animal(x)] `

∀x[Dog(x)→ Animal(x)]

Which is equivalent to :
∀x[¬Dog(x) ∨ Mammal(x)] ∧ ∀x[¬Mammal(x) ∨ Animal(x)] `

∀x[¬Dog(x) ∨ Animal(x)]

This can be derived in a single resolution step:

Mammal(x) resolves against ¬Mammal(x) for all possible values
of x.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-4

1st-order Clausal Form

To use resolution as a general 1st-order inference rule we have
to convert 1st-order formulae into a clausal form similar to
propositional CNF.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-5

1st-order Clausal Form

To use resolution as a general 1st-order inference rule we have
to convert 1st-order formulae into a clausal form similar to
propositional CNF.

To do this we carry out the following sequence of transforms:

1. Eliminate → and ↔ using the usual equivalences.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-5

1st-order Clausal Form

To use resolution as a general 1st-order inference rule we have
to convert 1st-order formulae into a clausal form similar to
propositional CNF.

To do this we carry out the following sequence of transforms:

1. Eliminate → and ↔ using the usual equivalences.
2. Move ¬ inwards using the equivalences used for CNF plus:

¬∀x[φ] =⇒ ∃x[¬φ]

¬∃x[φ] =⇒ ∀x[¬φ]

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-5

1st-order Clausal Form

To use resolution as a general 1st-order inference rule we have
to convert 1st-order formulae into a clausal form similar to
propositional CNF.

To do this we carry out the following sequence of transforms:

1. Eliminate → and ↔ using the usual equivalences.
2. Move ¬ inwards using the equivalences used for CNF plus:

¬∀x[φ] =⇒ ∃x[¬φ]

¬∃x[φ] =⇒ ∀x[¬φ]

3. Rename variables so that each quantifier uses a different
variable (prevents interference between quantifiers in the
subesquent transforms).

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-5

4. Eliminate existential quantifiers using the Skolemisation
transform (described later).

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-6

4. Eliminate existential quantifiers using the Skolemisation
transform (described later).

5. Move universal quantifiers to the left.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-6

4. Eliminate existential quantifiers using the Skolemisation
transform (described later).

5. Move universal quantifiers to the left.

This is justified by the equivalences
∀x[φ] ∨ ψ =⇒ ∀x[φ ∨ ψ]

∀x[φ] ∧ ψ =⇒ ∀x[φ ∧ ψ] ,
which hold on condition that ψ does not contain the variable
x.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-6

4. Eliminate existential quantifiers using the Skolemisation
transform (described later).

5. Move universal quantifiers to the left.

This is justified by the equivalences
∀x[φ] ∨ ψ =⇒ ∀x[φ ∨ ψ]

∀x[φ] ∧ ψ =⇒ ∀x[φ ∧ ψ] ,
which hold on condition that ψ does not contain the variable
x.

6. Transform the matrix — i.e. the part of the formula following
the quantifiers — into CNF using the transformations given
above. (Any duplicate literals in the resulting disjunctions can
be deleted.)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-6

Skolemisation
Skolemisation is a transformation whereby existential quantifiers
are replaced by constants and/or function symbols.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-7

Skolemisation
Skolemisation is a transformation whereby existential quantifiers
are replaced by constants and/or function symbols.

Skolemisation does not produce a logically equivalent formula but
it does preserve consistency.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-7

Skolemisation
Skolemisation is a transformation whereby existential quantifiers
are replaced by constants and/or function symbols.

Skolemisation does not produce a logically equivalent formula but
it does preserve consistency.

If we have a formula set Γ∪{∃x[φ(x)]} then this will be consistent
just in case Γ ∪ {φ(κ)} is consistent, where κ is a new arbitrary
constant that does not occur in Γ or in φ.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-7

Skolemisation
Skolemisation is a transformation whereby existential quantifiers
are replaced by constants and/or function symbols.

Skolemisation does not produce a logically equivalent formula but
it does preserve consistency.

If we have a formula set Γ∪{∃x[φ(x)]} then this will be consistent
just in case Γ ∪ {φ(κ)} is consistent, where κ is a new arbitrary
constant that does not occur in Γ or in φ.

Consistency is also preserved by such an instantiation in the
case when ∃x[φ(x)] is embedded within arbitrary conjunctions and
disjunctions (but not negations). This is because the quantifier
could be moved outwards accross these connectives.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-7

Existentials within Universals

How does Skolemisation interact with universal quantification.

Consider 1) ∀x[∃y[Loves(x, y)] ∧ ¬Loves(x, x)]

How does this compare with 2) ∀x[Loves(x, κ) ∧ ¬Loves(x, x)]

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-8

Existentials within Universals

How does Skolemisation interact with universal quantification.

Consider 1) ∀x[∃y[Loves(x, y)] ∧ ¬Loves(x, x)]

How does this compare with 2) ∀x[Loves(x, κ) ∧ ¬Loves(x, x)]

From 2) we can infer Loves(κ, κ) ∧ ¬Loves(κ, κ)]

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-8

Existentials within Universals

How does Skolemisation interact with universal quantification.

Consider 1) ∀x[∃y[Loves(x, y)] ∧ ¬Loves(x, x)]

How does this compare with 2) ∀x[Loves(x, κ) ∧ ¬Loves(x, x)]

From 2) we can infer Loves(κ, κ) ∧ ¬Loves(κ, κ)]

But this inconsistency does not follow from 1).

From 1) we can get ∃y[Loves(κ, y)] ∧ ¬Loves(κ, κ)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-8

Existentials within Universals

How does Skolemisation interact with universal quantification.

Consider 1) ∀x[∃y[Loves(x, y)] ∧ ¬Loves(x, x)]

How does this compare with 2) ∀x[Loves(x, κ) ∧ ¬Loves(x, x)]

From 2) we can infer Loves(κ, κ) ∧ ¬Loves(κ, κ)]

But this inconsistency does not follow from 1).

From 1) we can get ∃y[Loves(κ, y)] ∧ ¬Loves(κ, κ)

But then if we apply existential elimination we mush pick a new
constant for y. So we would get, e.g.

Loves(κ, λ) ∧ ¬Loves(κ, κ).

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-8

Skolem Functions

To avoid this problem Skolem constants for existentials lying within
the scope of universal quantifiers must be made to somehow
vary according to possible choices for instantiations of those
universals.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-9

Skolem Functions

To avoid this problem Skolem constants for existentials lying within
the scope of universal quantifiers must be made to somehow
vary according to possible choices for instantiations of those
universals.

How can we describe something whose denotation varies
depending on the value of some other variable??

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-9

Skolem Functions

To avoid this problem Skolem constants for existentials lying within
the scope of universal quantifiers must be made to somehow
vary according to possible choices for instantiations of those
universals.

How can we describe something whose denotation varies
depending on the value of some other variable??
By a function.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-9

Skolem Functions

To avoid this problem Skolem constants for existentials lying within
the scope of universal quantifiers must be made to somehow
vary according to possible choices for instantiations of those
universals.

How can we describe something whose denotation varies
depending on the value of some other variable??
By a function.

Hence Skolemisation of existentials within universals is handled
by the transform:

∀x1 . . . ∀xn[. . . ∃y[φ(y)]] =⇒ ∀x1 . . . ∀xn[. . . φ(f(x1, . . . , xn))] ,

where f is a new arbitrary function symbol.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-9

1st-order Clausal Formulae

A 1st-order clausal formula is a disjunction of literals which may
contain variables and/or Skolem constants/functions as well as
ordinary constants.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-10

1st-order Clausal Formulae

A 1st-order clausal formula is a disjunction of literals which may
contain variables and/or Skolem constants/functions as well as
ordinary constants.

All variables in a clause are universally quantified. Thus, provided
we know which symbols are variables, we can omit the quantifiers.
I shall use capital letters for the variables (like Prolog).

Example clauses are:

G(a), H(X,Y) ∨ J(b, Y), ¬P (g(X)) ∨ Q(X),

¬R(X,Y) ∨ S(f(X,Y))

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-10

Unification

Given two (or more) terms (i.e. functional expressions),
Unification is the problem of finding a substitution for the variables
in those terms so that the terms become identical.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-11

Unification

Given two (or more) terms (i.e. functional expressions),
Unification is the problem of finding a substitution for the variables
in those terms so that the terms become identical.

A substitution my replace a variable with a constant (e.g. X ⇒ c)
or functional term (e.g. X ⇒ f(a)) or with a another variable (e.g.
X ⇒ Y)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-11

Unification

Given two (or more) terms (i.e. functional expressions),
Unification is the problem of finding a substitution for the variables
in those terms so that the terms become identical.

A substitution my replace a variable with a constant (e.g. X ⇒ c)
or functional term (e.g. X ⇒ f(a)) or with a another variable (e.g.
X ⇒ Y)

A set of substitutions, θ, which unifies a set of terms is called a
unifier for that set.

E.g. {(X⇒Z), (Y⇒Z), (W⇒g(a))}
is a unifier for: {R(X,Y, g(a)), R(Z,Z,W)}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-11

Instances and Most General Unifiers
The result of applying a set of substitutions θ to a formula φ is
denoted φθ and is called an instance or instantiation of φ.

If θ is a unifier for φ and ψ then we have φθ ≡ ψθ.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-12

Instances and Most General Unifiers
The result of applying a set of substitutions θ to a formula φ is
denoted φθ and is called an instance or instantiation of φ.

If θ is a unifier for φ and ψ then we have φθ ≡ ψθ.

There may be other unifiers θ′, such that φθ′ ≡ ψθ′.

If for all unifiers θ′ we have φθ′ is an instance of φθ, then φθ is
called a most general unifier (or m.g.u) for φ and ψ.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-12

Instances and Most General Unifiers
The result of applying a set of substitutions θ to a formula φ is
denoted φθ and is called an instance or instantiation of φ.

If θ is a unifier for φ and ψ then we have φθ ≡ ψθ.

There may be other unifiers θ′, such that φθ′ ≡ ψθ′.

If for all unifiers θ′ we have φθ′ is an instance of φθ, then φθ is
called a most general unifier (or m.g.u) for φ and ψ.

An m.g.u. instantiates variables only where necessary to get a
match.

If mgu(αβ) = θ but also αθ′ ≡ βθ′ then there must be some
substitution θ′′such that (αθ)θ′′ ≡ αθ′

M.g.u.s are unique modulo renaming variables.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-12

An Algorithm for Computing Unifiers

There are many algorithms for computing unifiers. This is a simple
re-writing algorithm.

To compute the m.g.u. of a set of expressions {α1, . . . , αn}

Let S be the set of equations {α1 = α2, . . . , αn−1 = αn}

We then repeatedly apply the re-write and elimination rules given
on the next slide to any suitable elements of S.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-13

1. Identity Elimination: remove equations of the form α = α.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-14

1. Identity Elimination: remove equations of the form α = α.

2. Decomposition:
α(β1, . . . , βn) = α(γ1, . . . , γn) =⇒ β1 = γ1, . . . βn = γn.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-14

1. Identity Elimination: remove equations of the form α = α.

2. Decomposition:
α(β1, . . . , βn) = α(γ1, . . . , γn) =⇒ β1 = γ1, . . . βn = γn.

3. Match failure: α = β or α(. . .) = β(. . .), where α and β are
distinct constants or function symbols. There is no unifier.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-14

1. Identity Elimination: remove equations of the form α = α.

2. Decomposition:
α(β1, . . . , βn) = α(γ1, . . . , γn) =⇒ β1 = γ1, . . . βn = γn.

3. Match failure: α = β or α(. . .) = β(. . .), where α and β are
distinct constants or function symbols. There is no unifier.

.

4. Occurs Check failure: X = α(. . . X . . .). X cannot be equal
to a term containing X. No unifier.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-14

1. Identity Elimination: remove equations of the form α = α.

2. Decomposition:
α(β1, . . . , βn) = α(γ1, . . . , γn) =⇒ β1 = γ1, . . . βn = γn.

3. Match failure: α = β or α(. . .) = β(. . .), where α and β are
distinct constants or function symbols. There is no unifier.

.

4. Occurs Check failure: X = α(. . . X . . .). X cannot be equal
to a term containing X. No unifier.

5. Substitution: Unless occurs check fails, replace an equation
of the form (X = α) or (α = X) by (X ⇒ α) and apply the
substitution X ⇒ α to all other equations in S.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-14

1. Identity Elimination: remove equations of the form α = α.

2. Decomposition:
α(β1, . . . , βn) = α(γ1, . . . , γn) =⇒ β1 = γ1, . . . βn = γn.

3. Match failure: α = β or α(. . .) = β(. . .), where α and β are
distinct constants or function symbols. There is no unifier.

.

4. Occurs Check failure: X = α(. . . X . . .). X cannot be equal
to a term containing X. No unifier.

5. Substitution: Unless occurs check fails, replace an equation
of the form (X = α) or (α = X) by (X ⇒ α) and apply the
substitution X ⇒ α to all other equations in S.

After repeated application you will either reach a failure or end up

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-14

with a substitution that is a unifier for all the original set of terms.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-15

Unification Examples

Terms Unifier

R(X, a) R(g, Y) {X⇒g, Y⇒a}
F (X) F (Y) {X⇒Y } (or {Y⇒X})
P (X, a) P (Y, f(a)) none — a 6= f(a)

T (X, f(a)) T (f(Z), Z) {Z⇒f(a), X⇒f(f(a))}
T (X, a) T (Z,Z) {X⇒a, Z⇒a}
R(X,X) R(a, b) none

F (X) F (g(a, Y)) X⇒g(a, Y).

F (X) F (g(a,X)) none — occurs check failure.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-16

1st-order Binary Resolution
1st-order resolution is acheived by first instantiating two clauses
so that they contain complementary literals. Then an inference
that is essentially the same as propositional resolution can be
applied.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-17

1st-order Binary Resolution
1st-order resolution is acheived by first instantiating two clauses
so that they contain complementary literals. Then an inference
that is essentially the same as propositional resolution can be
applied.
So, to carry out resolution on 1st-order clauses α and β we look
for complementary literals φ ∈ α and ¬ψ ∈ β. Such that φ and ψ
are unifiable.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-17

1st-order Binary Resolution
1st-order resolution is acheived by first instantiating two clauses
so that they contain complementary literals. Then an inference
that is essentially the same as propositional resolution can be
applied.
So, to carry out resolution on 1st-order clauses α and β we look
for complementary literals φ ∈ α and ¬ψ ∈ β. Such that φ and ψ
are unifiable.
We apply the unifier to each of the clauses.
Then we can simply cancel the complementary literals and collect
the remaining literals from both clauses to form the resolvent.
(We also need to avoid problems due to shared variables. See
next slide.)

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-17

1st-order Binary Resolution
Rule Formalised

To apply resolution to clauses α and β:

Let β′ be a clause obtained by renaming variables in β so that α
and β′ do not share any variables.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-18

1st-order Binary Resolution
Rule Formalised

To apply resolution to clauses α and β:

Let β′ be a clause obtained by renaming variables in β so that α
and β′ do not share any variables.

Suppose α = {φ, α1, . . . αn} and β′ = {¬ψ, β1, . . . βn}

If φ and ψ are unifiable a resolution can be derived.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-18

1st-order Binary Resolution
Rule Formalised

To apply resolution to clauses α and β:

Let β′ be a clause obtained by renaming variables in β so that α
and β′ do not share any variables.

Suppose α = {φ, α1, . . . αn} and β′ = {¬ψ, β1, . . . βn}

If φ and ψ are unifiable a resolution can be derived.

Let θ be the m.g.u. (i.e. φθ ≡ ψθ).

The resolvent of α and β is then:

{α1θ, . . . αnθ, β1θ, . . . βnθ}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-18

Resolution Examples

Resolve {P (X), R(X, a)} and {Q(Y,Z), ¬R(Z, Y)}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-19

Resolution Examples

Resolve {P (X), R(X, a)} and {Q(Y,Z), ¬R(Z, Y)}

mgu(R(X, a), R(Z, Y)) = {X⇒Z, Y⇒a}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-19

Resolution Examples

Resolve {P (X), R(X, a)} and {Q(Y,Z), ¬R(Z, Y)}

mgu(R(X, a), R(Z, Y)) = {X⇒Z, Y⇒a}

Resolvent: {P (Z), Q(a, Z)}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-19

Resolution Examples

Resolve {P (X), R(X, a)} and {Q(Y,Z), ¬R(Z, Y)}

mgu(R(X, a), R(Z, Y)) = {X⇒Z, Y⇒a}

Resolvent: {P (Z), Q(a, Z)}

Resolve {A(a,X), H(X,Y), G(f(X,Y))} and
{¬H(c, Y), ¬G(f(Y, g(Y)))}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-19

Resolution Examples

Resolve {P (X), R(X, a)} and {Q(Y,Z), ¬R(Z, Y)}

mgu(R(X, a), R(Z, Y)) = {X⇒Z, Y⇒a}

Resolvent: {P (Z), Q(a, Z)}

Resolve {A(a,X), H(X,Y), G(f(X,Y))} and
{¬H(c, Y), ¬G(f(Y, g(Y)))}

Rename variables in 2nd clause: {¬H(c, Z), ¬G(f(Z, g(Z)))}

mgu(G(f(X,Y)), G(f(Z, g(Z)))) = {X⇒Z, Y⇒g(Z)}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-19

Resolution Examples

Resolve {P (X), R(X, a)} and {Q(Y,Z), ¬R(Z, Y)}

mgu(R(X, a), R(Z, Y)) = {X⇒Z, Y⇒a}

Resolvent: {P (Z), Q(a, Z)}

Resolve {A(a,X), H(X,Y), G(f(X,Y))} and
{¬H(c, Y), ¬G(f(Y, g(Y)))}

Rename variables in 2nd clause: {¬H(c, Z), ¬G(f(Z, g(Z)))}

mgu(G(f(X,Y)), G(f(Z, g(Z)))) = {X⇒Z, Y⇒g(Z)}

Resolvent: {A(a, Z), H(Z, g(Z)), ¬H(c, g(Z))}

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-19

Factoring
for Refutation Compleness

Resolution by itself is not refutation complete.
We need to combine it with one other rule.

This is the factoring rule, which is the 1st-order equivalent of the
deletion of identical literals in the propositional case.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-20

Factoring
for Refutation Compleness

Resolution by itself is not refutation complete.
We need to combine it with one other rule.

This is the factoring rule, which is the 1st-order equivalent of the
deletion of identical literals in the propositional case.

The rule is: {φ1, φ2, α1, . . . , αn} ` {φ, α1θ, . . . , αnθ}
where φ1 and φ2 have the same sign (both positive or both
negated) and are unifiable and have θ as their m.g.u..

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-20

Factoring
for Refutation Compleness

Resolution by itself is not refutation complete.
We need to combine it with one other rule.

This is the factoring rule, which is the 1st-order equivalent of the
deletion of identical literals in the propositional case.

The rule is: {φ1, φ2, α1, . . . , αn} ` {φ, α1θ, . . . , αnθ}
where φ1 and φ2 have the same sign (both positive or both
negated) and are unifiable and have θ as their m.g.u..

The combination of binary resolution and factoring inferences is
refutation complete for clausal form 1st-order logic — i.e. from
any inconsistent set of clauses these rules will eventually derive
the empty clause.

KR∧R — First-Order Resolution — This topic will not be in the exam. 〈 Contents 〉 KRR-16-20

Knowledge Representation

Lecture KRR-17

Compositional Reasoning

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-1

Compositional Reasoning

Given relations R(a, b) and S(b, c), we may wish to know the
relation between a and c.

Often this relation is constrained by the meanings of R and S.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-2

Compositional Reasoning

Given relations R(a, b) and S(b, c), we may wish to know the
relation between a and c.

Often this relation is constrained by the meanings of R and S.

For instance among the Allen relations we have:
During(a, b) ∧ Before(b, c)→ Before(a, c)

The composition of relations R and S is often written as R;S.

We can define: R;S(x, y) ≡ def ∃z[R(x, z) ∧ S(z, y)]

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-2

Disjunctive Compositions

Sometimes the composition of R(a, b) and S(b, c) allows for a
number of qualitatively different possibilities for the relation T (a, c)

For instance consider the case where we know During(b, r) and
Ended by(r, g)

There are 5 possible Allen relations between b and g.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-3

Relational Partitions

In several important domains of knowledge, sets of fundamental
relations R = {R1, . . . , Rn} have been found which are:

• Mutually Exhaustive — all pairs of objects in the domain are
related by some relation in R.

• Pairwise Disjoint — no two objects in the domain are related
by more than one relation in R.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-4

Relational Partitions

In several important domains of knowledge, sets of fundamental
relations R = {R1, . . . , Rn} have been found which are:

• Mutually Exhaustive — all pairs of objects in the domain are
related by some relation in R.

• Pairwise Disjoint — no two objects in the domain are related
by more than one relation in R.

Hence every pair of objects in the domain is related by exactly one
relation in R.
I shall call such a set a Relational Partition.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-4

Relational Partitions

In several important domains of knowledge, sets of fundamental
relations R = {R1, . . . , Rn} have been found which are:

• Mutually Exhaustive — all pairs of objects in the domain are
related by some relation in R.

• Pairwise Disjoint — no two objects in the domain are related
by more than one relation in R.

Hence every pair of objects in the domain is related by exactly one
relation in R.
I shall call such a set a Relational Partition.

The 13 Allen relations constitute a relational partition.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-4

The RCC-5 Relational Partition

In the domain of spatial relations there is a very general relational
partition known as RCC-5 consisting of the following relations:

(This partition ignores the difference between regions touching at
a boundary, which is made in RCC-8.)

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-5

Inverse and Disjunctive Relations

The inverse of a relation is defined by

R
^

(x, y) ≡ def R(y, x)

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-6

Inverse and Disjunctive Relations

The inverse of a relation is defined by

R
^

(x, y) ≡ def R(y, x)

It will be useful to have a notation for a relation which is the
disjunction of several other relations.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-6

Inverse and Disjunctive Relations

The inverse of a relation is defined by

R
^

(x, y) ≡ def R(y, x)

It will be useful to have a notation for a relation which is the
disjunction of several other relations.
I shall use the notation {R1, . . . , Rn}, where

{R1, . . . , Rn}(x, y) ≡ def R1(x, y) ∨. . .∨ Rn(x, y)

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-6

Inverse and Disjunctive Relations
The inverse of a relation is defined by

R
^

(x, y) ≡ def R(y, x)

It will be useful to have a notation for a relation which is the
disjunction of several other relations.
I shall use the notation {R1, . . . , Rn}, where

{R1, . . . , Rn}(x, y) ≡ def R1(x, y) ∨. . .∨ Rn(x, y)

(For uniformity R(x, y) can also be written as {R}(x, y).)

Given a set of relations R, the set of all disjunctive relations
formed from those in R will be denoted by R∗

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-6

Inverses and Disjunctive Relations
in RCC-5

In RCC-5 each of the relations DR, PO, and EQ are symmetric
and thus are their own inverses.

PPi is the inverse of PP and vice versa.

We can form arbitrary disjunctions of any of the relations.
However the following disjunctions are particularly significant:

P = {PP,EQ} (part)

Pi = {PPi,EQ} (part inverse)

O = {PO,PP,PPi,EQ} (overlap)

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-7

Relation Algebras

A Relation Algebra is a set of relations RA that is closed under:
negation, disjunction, inverse and composition.

i.e. ∀R1, . . . , Rn ∈ RA we have
¬R1, {R1, . . . , Rn}, R1

^
, (R1;R2) ∈ RA

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-8

Relation Algebras

A Relation Algebra is a set of relations RA that is closed under:
negation, disjunction, inverse and composition.

i.e. ∀R1, . . . , Rn ∈ RA we have
¬R1, {R1, . . . , Rn}, R1

^
, (R1;R2) ∈ RA

If R is a (finite) Relational Partition and R∗ is closed under
composition thenR∗ is a (finite) Relation Algebra; andR is a basis
for that algebra.

Relation Algebras generated from a finite basis in this way have a
nice computational property:

Every composition is equivalent to a disjunction of basis relations.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-8

Composition Tables

If R∗ is closed under composition then for every pair of relations
R1, R2 ∈ R we can express their composition as a disjunction of
relations in R.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-9

Composition Tables

If R∗ is closed under composition then for every pair of relations
R1, R2 ∈ R we can express their composition as a disjunction of
relations in R.

The compositions can then be recorded in a Composition Table,
which allows immediate look-up of any composition.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-9

The RCC-5 Composition Table

For RCC-5 we have the following table:

R(a, b)
R(b, c)

HH
HHH

HHH
HHH DR PO EQ PP PPi

DR all poss DR,PO,PP DR DR,PO,PP DR

PO DR,PO,PPi all poss PO PO,PP DR,PO,PPi

EQ DR PO EQ PP PPi

PP DR DR,PO,PP PP PP all poss

PPi DR,PO,PPi PO,PPi PPi O PPi

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-10

Composing Disjunctive Relations

In general we may want to compose two disjunctive relations.

{R1, . . . Rm}; {S1, . . . , Sn} =
⋃

i=1...m, j=1...n

(Ri ; Sj)

Thus to compose a disjunction we:
first find the compositions of each disjunct of the first relation with
each disjunct of the second relations;
then, form the disjunction of all these compositions.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-11

Compositional (Path) Consistency

When working with a set of facts involving relations that form
an RA we can use compositions as a powerful reasoning
mechanism.

Wherever we have factsR1(a, b) andR2(b, c) in a logical database,
we can use a composition table to look up and add some relation
R3(a, c).

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-12

Compositional (Path) Consistency

When working with a set of facts involving relations that form
an RA we can use compositions as a powerful reasoning
mechanism.

Wherever we have factsR1(a, b) andR2(b, c) in a logical database,
we can use a composition table to look up and add some relation
R3(a, c).

Where we already have information about the relation between a
and c, we need to combine it with the new R3 using the general
equivalence:
{. . . , Ri, . . .}(x, y) ∧ {. . . , Si, . . .}(x, y)↔

{. . . , Ri, . . .} ∩ {. . . , Si, . . .}(x, y)

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-12

Compositional Completion

The rule for combining a compositional inference with existing
information can be formally stated as:

R(x, y), S(y, z), T (x, z) =⇒ ((R;S) ∩ T)(x, z)

If using this rule we find that (R;S) ∩ T) = {} we have found an
inconsistency.

Where T ⊆ (R;S), we will have (R;S) ∩ T) = T so the inference
derives no new information.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-13

Relational Consistency Checking
Algorithm

To check consistency of a set of relational facts where the
relations form an RA, we repeatedly apply the compositional
inference rule until either:

• we find an inconsistency;

• we can derive no new information from any 3 relational facts.

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-14

Relational Consistency Checking
Algorithm

To check consistency of a set of relational facts where the
relations form an RA, we repeatedly apply the compositional
inference rule until either:

• we find an inconsistency;

• we can derive no new information from any 3 relational facts.

If we are dealing with an RA over a finite relational partition then
this procedure must terminate.

This gives us a decision procedure (which runs in n3 time, where
n is the number of objects involved).

KR∧R — Compositional Reasoning — This topic will not be in the exam. 〈 Contents 〉 KRR-17-14

